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Outline

• This is a presentation about
• A simple, unified redefinition of QCN
• Two methods for grabbing available bandwidth

1. SONAR
2. Active paths

• Does not increase gain
• Probes the path
• Very quickly recovers bandwidth
• Simplifies 2-QCN

• We will also discuss the pros-cons of the different 
methods for grabbing available bandwidth
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Redefine QCN

• It is convenient and simpler to redefine QCN using
– Current Rate (CR): Current transmission rate of the RL
– Target Rate (TR): Where CR wants to get to

• TR always greater than CR
• TR may exceed 10 Gbps, CR can never exceed 10 Gbps
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Rules for changing TR and CR

• Equilibrium
– When Fb<0 signal arrives 

• During FR1 (first cycle of FR)
-- CR goes down with every Fb<0 signal, TR remains unchanged

• During FR2 or higher
-- RL goes to FR1;  TR <--- CR just before ding;  CR <--- CR(1-Gd|Fb|)

– At the end of each FR cycle
• CR <--- (CR+TR)/2; TR does not change

– At the end of each cycle of AI or HAI
• TR <--- TR + Ri Mbps for AI, or TR <--- TR + Ri*cycle_cnt Mbps for HAI
• CR <--- (CR+TR)/2

• Downward Transience: Target Rate Reduction
– At the end of the FR1, if TR > 10*CR

• Then TR <--- TR/8; CR <--- (TR+CR)/2

• We will consider upward transience later



5

Downward Transience

• When a severe bottleneck appears, or when PAUSE is asserted 
and a saturation tree begins to form, it is important to settle RLs
quickly to a lower rate

• By reducing the downward transience time 
– Packet drops or long transients occurring during congestion episodes 

are highly reduced
– The effect is most noticeable when the RTT is large, because bursty

dings are quite likely in this case, and the RLs take a long time to get 
into steady-state
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Improvement in transient time due to
Target Rate Reduction
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Upward Transience

• For stable recovery of available bandwidth, we need 
the following   
– A stable indication of “available bandwidth”

• We cannot increase transmission rate based on instantaneous 
value of Fb > 0 (or Qoff or Qdelta)

• Because they will all swing from positive to negative as RTT 
increases

– To probe the path

• Two methods
– SONAR
– Path-based congestion indication

• Path-based method is preferred, but we’ll see SONAR briefly first
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SONAR

• The main idea
– RL sends periodic pings (details later) probing for extra bandwidth
– A switch which “has no extra bandwidth” responds indicating this; else, it 

does not respond
– If no switch responds, then the path has extra bandwidth available
– RL infers this whenever a ping elicits no “echo”
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The Algorithm at RL

FR

-- 5 cycles, 100 pkts each

AI

-- 100 pkts/cycle, Ri Mbps increase

HAI

-- 100 pkts/cycle, 

-- Ri x cycle_cnt Mbps

Bdwdth NOT Available

Bdwdth Available

SONAR 
Ping

Fb < 0
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SONAR

• The Ping Timer
– The ping timer is in one of 3 states: Waiting to probe (WP), waiting 

for echo (WE), short fuse (SF)

• The operation
– The RL goes to the WP state whenever it receives an Fb<0 signal
– If the WP timer expires, the next pkt sent by RL is a “special pkt”

• Spl pkt == data packet with 1 bit set to indicate special
– After Spl pkt is launched, RL goes to WE
– If RL hears an echo for the SP

• The ping timer returns to WP; RL continues operation (I.e FR or AI)
– If the WE clock expires

• Ping timer goes to SF; RL goes to HAI
• In HAI, RL increases rate due to 100-pkt byte ctr and the ping timer
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At the Switch

• Bdwdth available if queue-length < 6 pkts (say) for at least 
10 msecs
– Q_len < Q_eq (= 22 pkts) means input rate < output rate
– So every time Q_len < 6 pkts, swith starts congestion timer
– If timer expires, bdwdth available; else timer restarted when Q_len < 

6 pkts again
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Simulations: OG Hotspot

• Parameters
– 10 sources share a 10 G link, whose capacity drops to 0.5G during 2-4 secs
– Max offered rate per source: 1.05G
– RTT = 500 usec
– Buffer size = 100 pkts; Qeq = 22
– Drift timer disabled

Source 1
Source 2

Source 10

10 G 10 G

0.5G
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Bdwdth Recovery

Time improvement

-- 350+ msces down to 38 msecs

-- 0 false alarms
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Queue size: No effect on stability
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• The SONAR idea is a simple way of discovering available bandwidth 
without compromising stability

• However, QCN-SONAR has a drawback of not exploring all the paths 
in a multipath scenario, and moreover
– Ping messages could get stuck in paused queues (at least 

something special might need to be don to deal with this)
– It might send back-to-back SONAR pings to a switch

• This leads us to the next approach, which improves on SONAR

Summary of SONAR
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Method 2: Path-based congestion notices

• The key idea is simple to state
– RLs will try to increase rate using a timer, not just a byte-counter
– Therefore, switches which have no bandwidth available need to pro-actively 

push back
– This means, multipathing or not, every congested path will continually push 

back
– Main issue: Choosing the timer value at the RL

• Too small means aggressive source behavior, too large means longer bandwidth 
recovery times; but this is a trade-off, the method is fundamentally correct

• Recall: There are two congestion sensors at each switch at any time
– Fb: which is a multibit signal
– BA: a binary “bandwidth available” signal

• BA = 0 means bandwidth NOT available
– Note: Fb < 0 implies BA = 0, but not the other way around
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Method 2: The Details

• At the switch
– Sample packets with a probability which increases with Fb, both

positive and negative
– If Fb<0 for sampled packet, send to source
– If Fb>=0

• If BA=0, send “push back” message (Fb99) to source
• If BA=1, do nothing

• At the RL
– There is a timer which runs for T msecs 

• Timer is reset every time an Fb<0 or Fb99 message is received
– When Fb<0 signal is received, same actions as before
– When Fb99 signal is received

• TR and CR remain unchanged
• Go back one cycle in FR

– When timer or byte-counter expires
• Go to next cycle, update TR and CR as before

Fb

Psamp



18

x

A useful mental image

Number of bytes yet to  recover

Fast Recovery

(Hyper)Active Increase

Amount of rate 
yet to recover

500 pkts or 5xT msecs, whichever is earlier 
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x

When Fb<0 signal arrives

Number of bytes yet to  recover

Fast Recovery

Amount of rate 
yet to recover

X
(bytes_to_go, CR)

x (500, CR(1-Gd|Fb|))

(H)AI
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x

When Fb99 signal arrives

Number of bytes left to recover

Fast Recovery

Amount of rate to 
recover

Xx
(bytes_to_go, CR)(bytes_to_go - 1 cycle, CR)

(H)AI
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x

An evolution in phase space

Number of bytes left to recover

Amount of rate
to recover

x Fast Recovery

Fb<0

Fb99

500 pkts or 5xT msecs, whichever is earlier 

(H)AI
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Simulations: Stability with Method 2
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Stability improves due to cycle-
stretching when Fb99 is received

This is better
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Improvement in transient time due to
Target Rate Reduction (recall slide 6)
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Improvement in transient time due to
Target Rate Reduction and Timer
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Recovery time: OG Hotspot

• Parameters
– 10 sources share a 10 G link, whose capacity drops to 0.5G during 2-4 secs
– Max offered rate per source: 1.05G
– RTT = 40 usec
– Buffer size = 100 pkts; Qeq = 22
– Bandwidth recovery timer: 5 msecs
– Drift timer disabled

Source 1
Source 2

Source 10

10 G 10 G

0.5G
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Bdwdth Recovery

Time improvement

-- 300+ msecs to 28 msecs
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In summary

• We have a simple, unified redefinition of QCN
– Uses the TR--CR formalism
– Stability does not require any modifications or parameter changes (set w=2)
– Deals with upward and downward transience

• Congestion transience is shortened
• Recovery times are improved
• Multipathing is also dealt with, since all paths report BA status
• Does not affect stability

• Note that the above attributes are also true for the Fb-hat approach
– The difference is that it is all at the source
– There was no timer, so its recovery times were poor

• We (Berk Atikoglu and Abdul Kabbani) are also beginning to get Omnet going
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CN Mantras

• Short buffers are not a problem
– This is where multibit Fb and springiness of QCN help 

• Swinging queues (during transience and with large RTT) are ok
– This is consistent behavior for control schemes

• Keep a simple control loop
– Stay with gain parameters once they are chosen
– Detect transient conditions quickly and adapt operation

• Better not to adapt gains dynamically, environment likely to change quickly

• Look at flow completion time (FCT): that is what matters eventually


