
QCN: Notes on a Stable Improvement
of Transient Response: Part 2

Abdul Kabbani, Rong Pan,
Balaji Prabhakar and Mick Seaman

2

Outline

• 2-QCN
– A unified, simplified redefinition
– Settling to lower rate quickly (e.g. severe bottleneck and PAUSE)

• Inferring available bandwidth in multipath scenarios
– Method 1: Probing “congested paths”
– Method 2: “Path-based” congestion notices

3

2-QCN: A redefinition

• A convenient way of viewing QCN is using
– Current Rate (CR): Current transmission rate of the RL.
– Target Rate (TR): Where CR wants to get to.

• TR always greater than CR
• TR may exceed 10 Gbps, CR can never exceed 10 Gbps

• Rules for changing CR and TR
– When Fb<0 signal arrives

• During FR1 (first cycle of FR)
 -- CR goes down with every Fb<0 signal, TR remains unchanged
• During FR2 or higher
 -- RL into FR1; TR <--- CR just before ding; CR <--- CR(1-Gd|Fb|)

– At the end of each FR cycle
• CR <--- (CR+TR)/2; TR does not change

– At the end of each cycle of AI or HAI
• TR <--- TR + 12 Mbps for AI, or TR <--- TR + 12*cycle_cnt Mbps for HAI
• CR <--- (CR+TR)/2

4

Settling to lower rate quickly

• It is important to settle RLs quickly to a lower rate
– E.g. when a severe bottleneck appears, or when PAUSE is

asserted and a saturation tree begins to form

• The addition to the algorithm is as follows
– At the end of the FR1,

• If TR > 10*CR, then TR <--- TR/8; CR <--- (TR+CR)/8

– By reducing the transience time
• Packet drops or bad effects occurring during congestion episodes

are highly reduced
• The effect is most noticeable when the RTT is large, because

bursty dings are quite likely in this case, and the RLs take a long
time to get into steady-state

• Sims in Atlanta

5

Grabbing bandwidth:
The multipath problem

• The SONAR idea presented last week had good recovery times while
leaving stability completely unaffected
– However, in the presence of multipathing, SONAR pings may not

explore all the available paths

• We discuss two methods
– Method 1: “Ping congested paths” is an extension of SONAR
– Method 2: “Path-based congestion notice”

• Method 1
– Insert a flowid into each packet
– A CP sends the flowid back to the RL with an Fb<0 signal
– RL stores the flowid from the last ding
– When It wants to send a ping, it sends out the ping on a packet whose

flowid equals the one stored
– This makes it more likely that the “last congested path” gets pinged,

similar to pinging a CP using CPID

6

Discussion of Method 1

• It is not exact
– No guarantee that there will be a packet going through the last

congested path
– No guarantee that that path is the only bottleneck
– No guarantee that the flowid we come up with is adequate

• Switch may receive a lot of back-to-back pings
– Because SONAR pings are like pre-sampled packets, even though each

RL only sends one ping every 10ms, it is possible for a switch to get back-
to-back pings from many RLs

– Better if the switch did the sampling

• These and other considerations lead us to Method 2

7

Method 2: Path-based congestion notices

• The key idea is simple to state
– RLs will try to increase rate using a timer, not just a byte-counter
– Therefore, switches which have no bandwidth available need to pro-actively

push back
– This means, multipathing or not, every congested path will continually push

back
– Main issue: Choosing the timer value at the RL

• Too small means aggressive source behavior, too large means longer bandwidth
recovery times; but this is just a trade-off, the method is fundamentally correct

• Method 2: The details
– A switch is either in “bandwidth available mode” or in “bandwidth NOT

available” mode
• Recall: bandwidth available means queue size is close to zero for a while

– Therefore there are two congestion sensors at each switch at any time
• Fb: which is a multibit signal
• BA: a binary “bandwidth available” signal; BA = 0 means bandwidth NOT

available
• Note: Fb < 0 implies BA = 0, but not the other way around

8

Method 2: Path-based congestion notices

• At the switch
– Sample packets with a probability which increases with Fb, both

positive and negative
– If Fb<0 for sampled packet, send to source
– If Fb>=0

• If BA=0, send “push back” message (Fb99) to source
• If BA=1, do nothing

• At the RL
– There is a timer which runs for T msecs

• Timer is reset every time an Fb<0 or Fb99 message is received
– When Fb<0 signal is received, same actions as before
– When Fb99 signal is received

• TR and CR remain unchanged
• Increase the length of current cycle by 100 packets

– When timer or byte-counter expires
• Go to next cycle, update TR and CR as before

Fb

Psamp

9

Simulations: Stability with Method 2

10

Stability improves due to cycle-
stretching when Fb99 is received

11

Recovery time: OG Hotspot
• Parameters

– 10 sources share a 10 G link, whose capacity drops to 0.5G during 2-4 secs
– Max offered rate per source: 1.05G
– RTT = 40 usec
– Buffer size = 100 pkts; Qeq = 22
– Bandwidth recovery timer: 5 msecs
– Drift timer disabled

Source 1
Source 2

Source 10

10 G 10 G

0.5G

12

Bdwdth Recovery

Time improvement
-- 300+ msecs to 28 msecs

13

• 2-QCN
– Simplified, unified by the TR--CR formalism
– Included a method that improves “downward transience;”

when severe bottleneck appears or saturation trees forms
– Two methods discussed for dealing with “upward transience”

• Method 1 builds on SONAR
• Method 2 more correct, but needs a liberal choice of timer value

• More sims and complements in Atlanta

Conclusions

