Congestion Management Protocols Simulation Results and Protocol Variations

Guenter Roeck, Teak Technologies

July 2007

- Independent protocol validation
- Determine performance of CP <->RP probing protocols
- Simulated Protocols
- Simulation Environment and Parameters
- Simulation Results
- Summary and Observations
- Conclusion

Simulated Protocols

- ECM
- As specified in au-bergamasco-ecm-v0.1.pdf
- E2CM
- As specified in au-sim-IBM-ZRL-E2CM-proposal-r1.09b.ppt
- QCN
- 2-point architecture
- FECN
- As per March 2007 document, using probes (non-tagging)
- FECN-B
- Modifications as proposed in Geneva (BCN-00, fast start)
- QCN-P
- QCN 2-point architecture with added probes from RP to CP
- E2CM-P
- Similar to ECM/E2CM, with probes from RP to CP replacing tags/path probing
- E2CM-PR, QCN-PR
- Similar to E2CM-P/QCN-P, with added data rate guidance from CP to RP

OCN-P, E2CM-P Operation

- Probes sent for rate limited flows in regular intervals
- Probe destination address is most recent CP requesting a rate decrease
- Only rate limited flows are probed
- Probes sent as high priority frames

QCN-PR, E2CM-PR Operation

- Probes sent for rate limited flows in regular intervals
- Probe destination address is most recent CP requesting a rate decrease
- Only rate limited frames are probed
- Probes sent as high priority frames
- ECM packets and probe responses include suggested and maximum data rate in addition to Qoff, Qdelta
- Reaction Point takes suggested and maximum data rate into account when adjusting its transmit rate

- While I have tried to implement all protocols as specified, there is no guarantee that I got everything right
- Simulations results reflect my implementation, not necessarily the intend of the protocol authors
- My sincere apologies if I got something wrong ...
- OMNET++
- INET framework
- Added support for different CM protocols
- Some 6,500 LOC total
- Three weeks development time including simulation runs
- Switch between protocols by changing configuration parameters

Simulation setup

- Two simulation runs per protocol, with different algorithm parameters
- Presenting only first set of results
- 100 slides is bad enough ...
- Second set of results typically does not change the trend
θ Results for second set of tests are typically better for most of the protocols
- Test topologies
- Baseline test as proposed in au-sim-bergamasco-baseline-sim-scenario-092806v06.pdf
- Tests 1-3, 5-8 as proposed in au-sim-wadekar-reqd-extended-sim-list-020807.pdf
- No time to implement framework changes required to run test 4
- Multi-hop test with several $(7,12)$ congestion points
- System parameters
- Switch latency (processing time) = 1 us
- Link latency $=500 \mathrm{~ns}$
- Switch frame capacity = 200 packets (300 kB)
- Packet length = 1500 bytes
- No PAUSE generated by switch
- Did not have time to implement necessary framework changes
- Using PAUSE to create output generated hotspots

ECM Run 1

$$
\text { Qeq = } 375
$$

Qsc = 1600
Qmc $=2400$
Qsat disabled
$\mathrm{Gi}=0.53333$
$\mathrm{Gd}=0.00026667$
$R u=1000000$
$R d=1000000$
$\mathrm{Td}=1 \mathrm{~ms}$
Rmin $=1000000$
$W=2.0$
samplingInterval = 150000

ECM Run 2

Qeq $=375$
Qsc = 1600
$Q m c=2400$
Qsat disabled
$\mathrm{Gi}=0.53333$
$\mathrm{Gd}=0.00026667$
$R u=1000000$
$R d=1000000$
$T d=1 \mathrm{~ms}$
Rmin $=1000000$
$\mathrm{W}=2.0$
samplingInterval = 75000

E2CM, E2CM-P, E2CM-PR Run 1

$$
\text { Qeq = } 375
$$

Qsc = 1600
Qmc = 2400
Qsat disabled
$\mathrm{Gi}=0.53333$
$\mathrm{Gd}=0.00026667$
$R u=1000000$
$\mathrm{Rd}=1000000$
$\mathrm{Td}=1 \mathrm{~ms}$
$R \min =1000000$
$\mathrm{W}=2.0$
flowQeq $=15000$
rateTimer $=1 \mathrm{~ms}[\mathrm{PR}]$
switchRateWeight $=0.02$ [PR]
samplingInterval $=150000$
probelnterval = 100000 [P, PR]

E2CM, E2CM-P, E2CM-PR Run 2

Qeq $=375$
Qsc $=1600$
Qmc = 2400
Qsat disabled
$\mathrm{Gi}=0.53333$
$\mathrm{Gd}=0.00026667$
$R u=1000000$
$\mathrm{Rd}=1000000$
$\mathrm{Td}=1 \mathrm{~ms}$
$R \min =1000000$
$\mathrm{W}=2.0$
flowQeq $=15000$
rateTimer $=1 \mathrm{~ms}[P R]$
switchRateWeight $=0.02[P R]$
samplingInterval $=75000$
probeInterval $=50000[\mathrm{P}, \mathrm{PR}]$

Simulation Parameters

FECN, FECN-B

$$
\begin{aligned}
& \mathrm{N} 0=10 \\
& \mathrm{~A}=1.1 \\
& \mathrm{~B}=1.002 \\
& \mathrm{C}=0.1 \\
& \text { Alpha }=0.5 \\
& \text { minRate }=10000000 \\
& \text { Qeq }=192000 \text { (bits) } \\
& \text { Qsc }=960000 \text { (bits) } \\
& \mathrm{T}=1 \mathrm{~ms}
\end{aligned}
$$

QCN Run 1

extraFastRecovery = true
fastRecoveryThreshold = 5
hyperactivelncrease = true
driftFactor $=1.0005$
$G d=0.0078125(1 / 128)$
timerPeriod $=200$ uS
minRate $=10000000$
minDecFactor $=0.5$
EfrMax = 1000000
A $=12000000$
Qeq $=24000$
$W=2.0$
baseProbability = 1\%
toThreshold = 150000

QCN Run 2

extraFastRecovery = true fastRecoveryThreshold = 5
hyperactivelncrease $=$ true
driftFactor $=1.0005$
$G d=0.0078125(1 / 128)$
timerPeriod $=200$ uS
$\operatorname{minRate}=10000000$
$\operatorname{minDecFactor}=0.5$
EfrMax = 1000000
$A=12000000$
Qeq $=24000$
$W=2.0$
baseProbability = 2\%
toThreshold = 75000

Simulation Parameters

QCN-P, QCN-PR Run 1

extraFastRecovery = true fastRecoveryThreshold = 5
hyperactiveIncrease $=$ true
Gd $=0.0078125(1 / 128)$
timerPeriod = 200uS
$\operatorname{minRate}=10000000$
minDecFactor $=0.5$
EfrMax = 1000000
$A=12000000$
Qeq $=24000$
W = 2.0
selfIncrease $=1000000[\mathrm{P}]$
selfIncreaseFactor $=0.1 \%[P R]$
rateT $=1 \mathrm{~ms}[\mathrm{PR}]$
switchRateWeight $=0.002[P R]$
baseProbability = 1\%
toThreshold = 100000

QCN-P, QCN-PR Run 2

extraFastRecovery = true fastRecoveryThreshold = 5
hyperactiveIncrease $=$ true
Gd $=0.0078125(1 / 128)$
timerPeriod = 200uS
minRate $=10000000$
minDecFactor $=0.5$
EfrMax = 1000000
$A=12000000$
Qeq $=24000$
W = 2.0
selfIncrease $=1000000[\mathrm{P}]$
selfIncreaseFactor $=0.1 \%[P R]$
rateT $=1 \mathrm{~ms}[\mathrm{PR}]$
switchRateWeight $=0.002[P R]$
baseProbability = 2\%
toThreshold = 50000

Baseline: Symmetric Topology, Single Hotspot

- Node 1 to 4 sending at 50% load to node 5

Baseline: Queue Length

Baseline: Queue Length

Baseline: Queue Length

Baseline: Throughput

Baseline: Throughput

Baseline: Throughput

FECN-B

Baseline: Fairness

E2CM

QCN

Baseline: Fairness

FECN-B

Test 1: Output Generated Single Hotspot

- All nodes (10): Uniform distribution, load: 8.5 Gb/s
- Node 1 (hotspot) service rate: 1Gb/s
- Node1 limits service rates by sending PAUSE frames to switch
- One congestion point
- Duration: 80 mS from ti=10ms to 90 ms

Test 1: Queue Length

FECN

QCN

Test 1: Queue Length

FECN-B

Test 1: Throughput

Test 1: Throughput

FECN-B

Test 2: Output-Generated Hotspot, Multi-Hop

- All: Uniform distribution traffic (background traffic)
- Nodes 1-6: 25\% (2.5 Gbps), Nodes 7-10: 40\% (4 Gbps)
- Primary Hotspot: Node 7 service rate = 5\% (Rx only)

Test 2: Queue Length

Test 2: Queue Length

Test 2: Queue Length

FECN-B

Test 2: Data Rate to Node 7

FECN

E2CM

QCN

Test 2: Data Rate to Node 7

E2CM-P

QCN-P

E2CM-PR

QCN-PR

- Four culprit flows of $1 \mathrm{~Gb} / \mathrm{s}$ each from nodes 1,4,8,9 to node 7 (hotspot)
- Three victim flows of $7 \mathrm{~Gb} / \mathrm{s}$ each: node 2 to 9,5 to 3 , and 10 to 6
- Node 7 service rate: 20\%
- Five congestion points; all switches and all flows are affected
- Fair allocation provides $0.5 \mathrm{~Gb} / \mathrm{s}$ to all culprits and $7 \mathrm{~Gb} / \mathrm{s}$ to all victims

Test 3: Queue Length

Test 3: Queue Length

Test 3: Queue Length

Test 3: Fairness

E2CM-P

QCN-P

E2CM-PR

QCN-PR

Test 5: Symmetric Topology, Single Hotspot, Bursty

- Point-to-point from node $1 . .4$ to node 5
- Load: 100\%
- Node 1 and 2 On/Off Sources (Ton=Toff=20ms)

Test 5: Queue Length

Test 5: Queue Length

FECN-B

Test 5: Throughput

Test 5: Throughput

FECN-B

Test 5: Fairness

Test 5: Fairness


```
FECN-B
```


Test 6: Output-Generated Dual Hotspot, Multi-Hop

- All: Uniform distribution traffic (background traffic)
- Nodes 1-6: 25\% (2.5 Gbps), Nodes 7-10: 40\% (4 Gbps)
- Two Hotspots: Node 7 \& 9 service rate $=5 \%$ (Rx only)

Test 6: Queue Length

Test 6: Queue Length

Test 6: Queue Length

FECN-B

Test 7: Multi-stage Dual Hotspot (Light \& Heavy)

- Two switches, all links 10 Gbps, no background traffic
- Four flows of 9 Gbps each from nodes 1,4,5,7 to node 8
- One flow of 9 Gbps each from node 2 to node 4
- Two congestion points
- Port from switch 1 to switch 2
- Port from switch 2 to node 8
- Fair allocation should provide 2.5 Gbps for all flows to node 8 and 7.5 Gbps for flow to node 4

Test 7: Queue Length

Test 7: Queue Length

Test 7: Queue Length

FECN-B

Test 7: Throughput

FECN

E2CM

Test 7: Throughput

Test 7: Throughput

FECN

E2CM

QCN

Test 7: Fairness

QCN-P

QCN-PR

FECN-B

Test 8: Multi-stage Dual Hotspot (Heavy \& Light)

- Two switches, all links 10 Gbps, no background traffic
- Two flows of 9 Gbps each from nodes 1 and 4 to node 8
- Three flows of 9 Gbps each from node 2 to node 4 , 3 to 5 , and 6 to 7
- Two congestion points
- Port from switch 1 to switch 2
- Port from switch 2 to node 8
- Fair allocation should provide 2.5 Gbps for all flows to switch 2 and 7.5 Gbps for flow from node 4 to node 8

Test 8: Queue Length

Test 8: Queue Length

Test 8: Queue Length

FECN-B

Test 8: Throughput

FECN

E2CM

QCN

Test 8: Throughput

QCN-P

QCN-PR

FECN-B

Test 8: Fairness

FECN

E2CM

Test 8: Fairness

QCN-P

E2CM-PR

QCN-PR

FECN-B

Test 9: 7-stage Hotspot

- $\quad \mathrm{N}=7$ switches; 3 hosts per switch
- Node <i> sends to node <i+3>; Node <i+1> sends to node ($\mathrm{N}-1$)* $3+1$; node <i+2> sends to node <i+4>
- 100\% load from all nodes
- \quad Node ($\mathrm{N}-1$) ${ }^{*} 3+1$ receives traffic from $<\mathrm{N}>$ sources
- N hotspots

Test 9: Queue Length

Test 9: Queue Length

Test 9: Queue Length

FECN-B

Test 9: Throughput

Test 9: Throughput

Test 9: Throughput

FECN-B

Test 9: Fairness

FECN-B

Test 10: 12-stage Hotspot

- $\quad \mathrm{N}=10$ switches; 3 hosts per switch
- Node <i> sends to node <i+3>; Node <i+1> sends to node ($\mathrm{N}-1)^{*} 3+1$; node <i+2> sends to node <i+4>
- 100% load from all nodes
- \quad Node $(\mathrm{N}-1)^{*} 3+1$ receives traffic from $<\mathrm{N}>$ sources
- N hotspots

Test 10: Queue Length

Test 10: Queue Length

Test 10: Throughput

Test 10: Throughput

E2CM

QCN

QCN-P

E2CM-PR

QCN-PR

- ECM
- Good performance over wide range of conditions
- Visible throughput impact due to tagging
- Some oscillation with complex topologies
- Marginal fairness
- E2CM
- Good fairness; favors short-distance flows over long distance flows
- Seems to have problems with output generated hotspots
- FECN
- Excellent fairness
- Slow reaction to changed conditions
- Problems with output generated hotspots and with complex topologies
- Oscillation with multiple hotspots
- QCN
- Fast reaction to load increases
- Slow reaction to load decreases
- Marginal fairness
- E2CM-P
- Pretty much equivalent to ECM
- E2CM-PR
- Very good fairness
- Oscillation in complex topologies w/ multiple hotspots
- QCN-P
- Overall best performance
- Marginal fairness
- QCN-PR
- Good fairness
- Starts oscillating in topology with 12 hotspots
- QCN style ECM packet generation (flexible probability) improves reaction time
- Might be worthwhile testing it with ECM/E2CM
- Fairness
- Linear self-increase improves fairness over multiplicative self-increase rate += selfIncrease;
e Even better is proportional self-increase towards maximum rate provided by congested switch rate += (switchMaxRate - rate) * selfIncreaseFactor;
- Rate guidance from switch improves fairness
- May cause oscillations

Observations - continued

- Avoid negative feedback to probes sent to CP
- Causes oscillations
- Oscillations observed with pretty much all protocols
- Especially in topologies with multiple hotspots
- Test ECM, E2CM etc with flexible ECM rate (QCN style)
- Verify if FECN and E2CM problems with output generated hotspots are caused by the simulation or a real problem
- Verify if observed oscillations are caused by the simulation or a real problem
- Feedback through Endpoint is not a requirement
- RP $\Leftrightarrow \mathrm{CP}$ protocol exchange is sufficient
- Tagging is not mandatory for any protocol
- Can use probes from RP to CP instead
\ominus RP $\Leftrightarrow \mathrm{CP}$ feedback highly recommended for positive feedback
- Rate guidance feedback helps to achieve fairness
- Use BCN message format for negative feedback
- Use Probes between RP and CP for positive feedback
- Consider adding Bandwidth guideline parameter to information sent from CP to RP
- Also consider including Min/Max rates to allow for more flexible feedback
- Example: Max rate = CP link speed

