

Congestion Management Protocols Simulation Results and Protocol Variations

Guenter Roeck, Teak Technologies

July 2007

- Independent protocol validation
- Determine performance of CP<->RP probing protocols

- Simulated Protocols
- Simulation Environment and Parameters
- Simulation Results
- Summary and Observations
- Conclusion

- ECM
 - As specified in au-bergamasco-ecm-v0.1.pdf
- E2CM
 - As specified in au-sim-IBM-ZRL-E2CM-proposal-r1.09b.ppt
- QCN
 - 2-point architecture
- FECN
 - As per March 2007 document, using probes (non-tagging)
- FECN-B
 - Modifications as proposed in Geneva (BCN-00, fast start)
- QCN-P
 - QCN 2-point architecture with added probes from RP to CP
- E2CM-P
 - Similar to ECM/E2CM, with probes from RP to CP replacing tags/path probing
- E2CM-PR, QCN-PR
 - Similar to E2CM-P/QCN-P, with added data rate guidance from CP to RP

OCN-P, E2CM-P Operation

- Probes sent for rate limited flows in regular intervals
- Probe destination address is most recent CP requesting a rate decrease
- Only rate limited flows are probed
- Probes sent as high priority frames

OCN-PR, E2CM-PR Operation

- Probes sent for rate limited flows in regular intervals 0
- Probe destination address is most recent CP requesting a rate decrease 0
- Only rate limited frames are probed 9
- Probes sent as high priority frames 0
- ECM packets and probe responses include suggested and maximum data rate in addition to Qoff, Qdelta 0
- Reaction Point takes suggested and maximum data rate into account when adjusting its transmit rate

- While I have tried to implement all protocols as specified, there is no guarantee that I got everything right
- Simulations results reflect my implementation, not necessarily the intend of the protocol authors
- My sincere apologies if I got something wrong ...

OMNET++

INET framework

- Added support for different CM protocols
 - Some 6,500 LOC total
 - Three weeks development time including simulation runs
- Switch between protocols by changing configuration parameters

- Two simulation runs per protocol, with different algorithm parameters
- Presenting only first set of results
 - 100 slides is bad enough ...
 - Second set of results typically does not change the trend
 - Results for second set of tests are typically better for most of the protocols

Test topologies

- Baseline test as proposed in au-sim-bergamasco-baseline-sim-scenario-092806v06.pdf
- Tests 1-3, 5-8 as proposed in au-sim-wadekar-reqd-extended-sim-list-020807.pdf
 - No time to implement framework changes required to run test 4
- Multi-hop test with several (7, 12) congestion points

- System parameters
 - Switch latency (processing time) = 1us
 - Link latency = 500ns
 - Switch frame capacity = 200 packets (300 kB)
 - Packet length = 1500 bytes
 - No PAUSE generated by switch
 - Did not have time to implement necessary framework changes
 - Using PAUSE to create output generated hotspots

75000

ECM Run 1	ECM Run 2
Qeq = 375	Qeq = 375
Qsc = 1600	Qsc = 1600
Qmc = 2400	Qmc = 2400
Qsat disabled	Qsat disabled
Gi = 0.53333	Gi = 0.53333
Gd = 0.00026667	Gd = 0.00026667
Ru = 1000000	Ru = 1000000
Rd = 1000000	Rd = 1000000
Td = 1ms	Td = 1ms
Rmin = 1000000	Rmin = 1000000
W = 2.0	W = 2.0
samplingInterval = 150000	samplingInterval =

E2CM, E2CM-P, E2CM-PR Run 1	E2CM, E2CM-P, E2CM-PR Run 2
Qeq = 375	Qeq = 375
Qsc = 1600	Qsc = 1600
Qmc = 2400	Qmc = 2400
Qsat disabled	Qsat disabled
Gi = 0.53333	Gi = 0.53333
Gd = 0.00026667	Gd = 0.00026667
Ru = 1000000	Ru = 1000000
Rd = 1000000	Rd = 1000000
Td = 1ms	Td = 1ms
Rmin = 1000000	Rmin = 1000000
W = 2.0	W = 2.0
flowQeq = 15000	flowQeq = 15000
rateTimer = 1ms [PR]	rateTimer = 1ms [PR]
switchRateWeight = 0.02 [PR]	switchRateWeight = 0.02 [PR]
samplingInterval = 150000	samplingInterval = 75000
probeInterval = 100000 [P, PR]	probeInterval = 50000 [P, PR]

FECN, FECN-B
N0 = 10
A = 1.1
B = 1.002
C = 0.1
Alpha = 0.5
minRate = 10000000
Qeq = 192000 (bits)
Qsc = 960000 (bits)
T = 1ms

QCN Run 1

extraFastRecovery = true fastRecoveryThreshold = 5 hyperactiveIncrease = true driftFactor = 1.0005Gd = 0.0078125 (1/128)timerPeriod = 200μ S minRate = 10000000minDecFactor = 0.5EfrMax = 1000000A = 12000000Qeq = 24000W = 2.0**baseProbability = 1%** toThreshold = 150000

QCN Run 2

extraFastRecovery = true fastRecoveryThreshold = 5 hyperactiveIncrease = true driftFactor = 1.0005Gd = 0.0078125 (1/128)timerPeriod = 200μ S minRate = 10000000minDecFactor = 0.5EfrMax = 1000000A = 12000000Qeq = 24000W = 2.0baseProbability = 2% toThreshold = 75000

QCN-P, QCN-PR Run 1

```
extraFastRecovery = true
fastRecoveryThreshold = 5
hyperactiveIncrease = true
Gd = 0.0078125 (1/128)
timerPeriod = 200uS
minRate = 10000000
minDecFactor = 0.5
EfrMax = 1000000
A = 12000000
Qeq = 24000
W = 2.0
selfIncrease = 1000000 [P]
selfIncreaseFactor = 0.1% [PR]
rateT = 1ms [PR]
switchRateWeight = 0.002 [PR]
baseProbability = 1%
toThreshold = 100000
```

QCN-P, QCN-PR Run 2

```
extraFastRecovery = true
fastRecoveryThreshold = 5
hyperactiveIncrease = true
Gd = 0.0078125 (1/128)
timerPeriod = 200uS
minRate = 10000000
minDecFactor = 0.5
EfrMax = 1000000
A = 12000000
Qeq = 24000
W = 2.0
selfIncrease = 1000000 [P]
selfIncreaseFactor = 0.1% [PR]
rateT = 1ms [PR]
switchRateWeight = 0.002 [PR]
baseProbability = 2%
toThreshold = 50000
```


Baseline: Symmetric Topology, Single Hotspot

• Node 1 to 4 sending at 50% load to node 5

Baseline: Oueue Length

ECM

FECN

Baseline: Oueue Length

E2CM-P

QCN-P

E2CM-PR

Baseline: Queue Length

FECN-B

ECM -ECM Throughput in cmBaseline.switchA.eth[4].queue (ecm.baseline.vec) 10000000000 -5000000000 -0 -0.1 0.105 0.11 0.115 0.12

FECN

Baseline: Throughput

QCN

Baseline: Throughput

QCN-P

Baseline: Throughput

FECN-B

ECM

FECN

Baseline: Fairness

E2CM

QCN

Baseline: Fairness

E2CM-P

QCN-P

E2CM-PR

Baseline: Fairness

FECN-B

Test 1: Output Generated Single Hotspot

- All nodes (10): Uniform distribution, load: 8.5 Gb/s
- Node 1 (hotspot) service rate: 1Gb/s
 - Node1 limits service rates by sending PAUSE frames to switch
- One congestion point
 - Duration: 80mS from ti=10ms to 90 ms

Test 1: Queue Length

ECM

FECN

E2CM

Test 1: Queue Length

E2CM-P

QCN-P

E2CM-PR

Test 1: Queue Length

FECN-B

ECM

FECN

Test 1: Throughput

E2CM

QCN

Test 1: Throughput

E2CM-P

QCN-P

E2CM-PR

Test 1: Throughput

FECN-B

Test 2: Output-Generated Hotspot, Multi-Hop

- All: Uniform distribution traffic (background traffic)
- Nodes 1-6: 25% (2.5 Gbps), Nodes 7-10: 40% (4 Gbps)
- Primary Hotspot: Node 7 service rate = 5% (Rx only)

Test 2: Queue Length

FECN

300 -

Test 2: Queue Length

E2CM-P

QCN-P

E2CM-PR

Test 2: Queue Length

ECM

FECN

Test 2: Data Rate to Node 7

E2CM

QCN

E2CM-P

QCN-P

Test 2: Data Rate to Node 7

E2CM-PR

Test 3: Output-generated Hotspot; Multi-hop, Selected Victims

- Four culprit flows of 1Gb/s each from nodes 1,4,8,9 to node 7 (hotspot)
- Three victim flows of 7 Gb/s each: node 2 to 9, 5 to 3, and 10 to 6
- Node 7 service rate: 20%
- Five congestion points; all switches and all flows are affected
- Fair allocation provides 0.5 Gb/s to all culprits and 7 Gb/s to all victims

Test 3: Queue Length

FECN

E2CM

Test 3: Queue Length

E2CM-P

QCN-P

E2CM-PR

Test 3: Queue Length

E2CM-P

QCN-P

E2CM-PR

Test 3: Fairness

ECM

FECN

E2CM

QCN

Test 3: Fairness

E2CM-P

QCN-P

E2CM-PR

Test 5: Symmetric Topology, Single Hotspot, Bursty

- Point-to-point from node 1..4 to node 5
- Load: 100%
- Node 1 and 2 On/Off Sources (Ton=Toff=20ms)

Test 5: Queue Length

ECM

FECN

E2CM

Test 5: Queue Length

E2CM-P

QCN-P

E2CM-PR

Test 5: Queue Length

ECM

0.6

0.8

FECN

0 -

ó

0.2

0.4

Test 5: Throughput

Test 5: Throughput

E2CM-P

QCN-P

E2CM-PR-P

Test 5: Throughput

Test 5: Fairness

ECM

FECN

E2CM

Test 5: Fairness

E2CM-P

QCN-P

E2CM-PR

Test 5: Fairness

Test 6: Output-Generated Dual Hotspot, Multi-Hop

- All: Uniform distribution traffic (background traffic)
- Nodes 1-6: 25% (2.5 Gbps), Nodes 7-10: 40% (4 Gbps)
- Two Hotspots: Node 7 & 9 service rate = 5% (Rx only)

ECM

FECN

Test 6: Queue Length

E2CM

Test 6: Queue Length

E2CM-P

QCN-P

E2CM-PR

Test 6: Queue Length

Test 7: Multi-stage Dual Hotspot (Light & Heavy)

- Two switches, all links 10 Gbps, no background traffic
- Four flows of 9 Gbps each from nodes 1,4,5,7 to node 8
- One flow of 9 Gbps each from node 2 to node 4
- Two congestion points
 - Port from switch 1 to switch 2
 - Port from switch 2 to node 8
- Fair allocation should provide 2.5 Gbps for all flows to node 8 and 7.5 Gbps for flow to node 4

Test 7: Queue Length

ECM

FECN

E2CM

QCN

Test 7: Queue Length

E2CM-P

QCN-P

E2CM-PR

Test 7: Queue Length

ECM

FECN

Test 7: Throughput

QCN

Test 7: Throughput

E2CM-P

QCN-P

E2CM-PR

Test 7: Throughput

Test 7: Fairness

ECM

FECN

E2CM

QCN

Test 7: Fairness

E2CM-P

QCN-P

E2CM-PR

Test 7: Fairness

Test 8: Multi-stage Dual Hotspot (Heavy & Light)

- Two switches, all links 10 Gbps, no background traffic
- Two flows of 9 Gbps each from nodes 1 and 4 to node 8
- Three flows of 9 Gbps each from node 2 to node 4, 3 to 5, and 6 to 7
- Two congestion points
 - Port from switch 1 to switch 2
 - Port from switch 2 to node 8
- Fair allocation should provide 2.5 Gbps for all flows to switch 2 and 7.5 Gbps for flow from node 4 to node 8

Test 8: Queue Length

ECM

FECN

E2CM

QCN

Test 8: Queue Length

E2CM-P

QCN-P

E2CM-PR

Test 8: Queue Length

ECM

FECN

Test 8: Throughput

QCN

E2CM

Test 8: Throughput

E2CM-P

QCN-P

E2CM-PR

Test 8: Throughput

Test 8: Fairness

ECM

FECN

E2CM

QCN

Test 8: Fairness

E2CM-P

QCN-P

E2CM-PR

Test 8: Fairness

- N=7 switches; 3 hosts per switch
- Node <i> sends to node <i+3>; Node <i+1> sends to node (N-1)*3+1; node <i+2> sends to node <i+4>
- 100% load from all nodes
- Node (N-1)*3+1 receives traffic from <N> sources
- N hotspots

Test 9: Queue Length

ECM

FECN

E2CM

Test 9: Queue Length

E2CM-P

QCN-P

E2CM-PR

Test 9: Queue Length

Test 9: Throughput

ECM

FECN

E2CM

QCN

Test 9: Throughput

E2CM-P

QCN-P

E2CM-PR

Test 9: Throughput

1000000000	FECN Throughput in cmCongestionChain.switchE[1].eth[1].queue (fecn-b.test9.vec)				
	/ [["	un di	սիկսիույին		
500000000 -					
_					
۰ ــــــــــــــــــــــــــــــــــــ					
0	0.2	0.4	0.6	0.8	1

Test 9: Fairness

ECM

FECN

E2CM Throughput in cmCongestionChain host[1] queue (e2cm.test3.vec) E2CM Throughput in cmCongestionChain host[1] queue (e2cm.test3.vec) E2CM Throughput in cmCongestionChain host[7] queue (e2cm.test3.vec) Queue (e2cm.

QCN

Test 9: Fairness

E2CM-P

QCN-P

E2CM-PR

Test 9: Fairness

Test 10: 12-stage Hotspot

- N=10 switches; 3 hosts per switch
- Node <i> sends to node <i+3>; Node <i+1> sends to node (N-1)*3+1; node <i+2> sends to node <i+4>
- 100% load from all nodes
- Node (N-1)*3+1 receives traffic from <N> sources
- N hotspots

ECM

Test 10: Queue Length

Test 10: Queue Length

E2CM-P

QCN-P

E2CM-PR

Test 10: Throughput

E2CM

Test 10: Throughput

E2CM-P

QCN-P

E2CM-PR

Test 10: Fairness

E2CM ---- E2CM Throughput in cmCongestionChain.host[1].queue (e2cm.test10.vec) E2CM Throughput in cmCongestionChain.host[4].queue (e2cm.test10.vec) 6000000000 E2CM Throughput in cmCongestionChain.host[7].queue (e2cm.test10.vec) -+- E2CM Throughput in cmCongestion Chain host[10].queue (e2cm.test10.vec) - E2CM Through ut in on Congetition Chain host [16] queue (sear 1) st10 we - E2 CM T roughput in cn Congestion Chain.host[19].gutur ((2cm.test10.vec) ---- E2CM Throughput in cmCongestion Chain.host[22].gueue (e2cm.test10.vec) E2CM Throughput in cmCongestion Chain host[25] queue (e2cm.test10.vec) 4000000000 + E2CM Throughput in cmCongestionChain.host[28].queue (e2cm.test10.vec -X-E2CM Throughput in cmCongestionChain.host[31].queue (e2cm.test10.vec) - E2CM Throughput in cmCongestionChain.host[33].queue (e2cm.test10.vec) 2000000000 02 n'4 0.6 n'ε

QCN

Test 10: Fairness

E2CM-P

QCN-P

E2CM-PR

● ECM

- Good performance over wide range of conditions
- Visible throughput impact due to tagging
- Some oscillation with complex topologies
- Marginal fairness

E2CM

- Good fairness; favors short-distance flows over long distance flows
- Seems to have problems with output generated hotspots

FECN

- Excellent fairness
- Slow reaction to changed conditions
- Problems with output generated hotspots and with complex topologies
- Oscillation with multiple hotspots
- QCN
 - Fast reaction to load increases
 - Slow reaction to load decreases
 - Marginal fairness

- E2CM-P
 - Pretty much equivalent to ECM
- E2CM-PR
 - Very good fairness
 - Oscillation in complex topologies w/ multiple hotspots
- QCN-P
 - Overall best performance
 - Marginal fairness
- QCN-PR
 - Good fairness
 - Starts oscillating in topology with 12 hotspots

- QCN style ECM packet generation (flexible probability) improves reaction time
 - Might be worthwhile testing it with ECM/E2CM
- Fairness
 - Linear self-increase improves fairness over multiplicative self-increase

rate += selfIncrease;

- Even better is proportional self-increase towards maximum rate provided by congested switch rate += (switchMaxRate - rate) * selfIncreaseFactor;
- Rate guidance from switch improves fairness
 - May cause oscillations

- Avoid negative feedback to probes sent to CP
 - Causes oscillations
- Oscillations observed with pretty much all protocols
 - Especially in topologies with multiple hotspots

- Test ECM, E2CM etc with flexible ECM rate (QCN style)
- Verify if FECN and E2CM problems with output generated hotspots are caused by the simulation or a real problem
- Verify if observed oscillations are caused by the simulation or a real problem

- Feedback through Endpoint is not a requirement
 - RP \(CP\) protocol exchange is sufficient
- Tagging is not mandatory for any protocol
 - Can use probes from RP to CP instead
- RP \III CP feedback highly recommended for positive feedback
- Rate guidance feedback helps to achieve fairness

- Use BCN message format for negative feedback
- Use Probes between RP and CP for positive feedback
- Consider adding Bandwidth guideline parameter to information sent from CP to RP
- Also consider including Min/Max rates to allow for more flexible feedback
 - Example: Max rate = CP link speed