Source-based E²CM:

Validation of the Orlando Proposal

Cyriel Minkenberg & Mitch Gusat IBM Research GmbH, Zurich March 22, 2007

Some Concerns re. E2CM Raised in Orlando

- Destination (DST)-based per-flow RX rate calculation (throughput accounting)
 - Preferably, the source (SRC) should handle this job
- 2. Global clock synchronization required for forward latency measurement
 - Too costly

Modification addressing Concern #1

1. SRC measures throughput in between probes

- 1. Generally this equals the configured mean probe interval (e.g. 75 KB)
 - 1. May vary due to imposed interval jitter and max-interval time limit (e.g. 10 ms)
- 2. Byte count $B(P_n)$ is included in probe P_n
 - 1. Optionally, source may store byte count locally
- 3. Upon reception, DST returns probe P_n including $B(P_n)$ and records probe arrival time $T_{dst}(P_n)$ in probe P_n
- 4. Upon return, SRC stores $T_{dst}(P_n)$ for this particular flow
- 5. SRC computes throughput as follows: $B(P_n) / (T_{dst}(P_n) T_{dst}(P_{n-1}))$
 - 1. Clock synchro is not an issue: both time stamps are recorded at DST

Potential demerits:

- 1. Does not account for dropped frames
- 2. Less robust to lost/corrupted probes

Modification addressing Concern #2

- Use SRC clock to determine forward latency
 - Expedite probes on reverse path
 - Use top priority traffic class
 - Switches automatically preempt other traffic for probes
 - SRC includes time stamp $T_{src}(P_n)$ in probe P_n
 - Upon return, SRC computes round-trip latency $L(P_n)$ = now $T_{src}(P_n)$
 - SRC keeps track of minimum round-trip latency $L_0 = \min_n(P_n)$
 - SRC computes effective forward latency as $L(P_n)$ L_0

Output-Generated Single-Hop Hotspot

- All nodes: Uniform destination distribution, load = 85% (8.5 Gb/s)
- Node 1 service rate = 10%
- One congestion point
 - Hotspot degree = N-1
 - All flows affected

Simulation Setup & Parameters

Traffic

- I.i.d. Bernoulli arrivals
- Uniform destination distribution (to all nodes except self)
- Fixed frame size = 1500 B

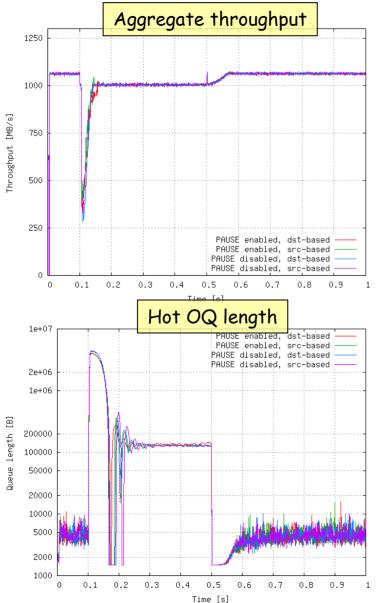
Scenarios

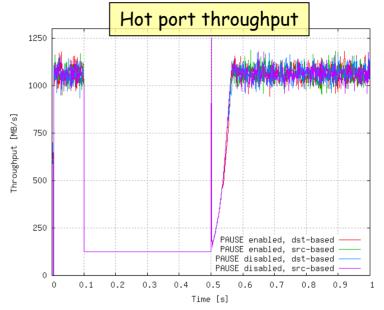
- Single-hop output-generated hotspot
- Switch
 - M = 300 KB/port
 - Partitioned memory per input, shared among all outputs
 - No limit on per-output memory usage
 - PAUSE enabled or disabled
 - Applied on a per input basis based on local high/low watermarks
 - watermark_{hiah} = 280 KB

 - watermark_{low} = 260 KB If disabled, frames dropped when input partition full

Adapter

- Per-node virtual output queuing
- No limit on number of rate limiters
- Unlimited ingress buffer size
- Egress buffer size = 1500 KB
- PAUSE enabled
 - watermark_{hiah} = 1500 rtt*bw KB
 - watermark_{low} = watermark_{high} 10 KB

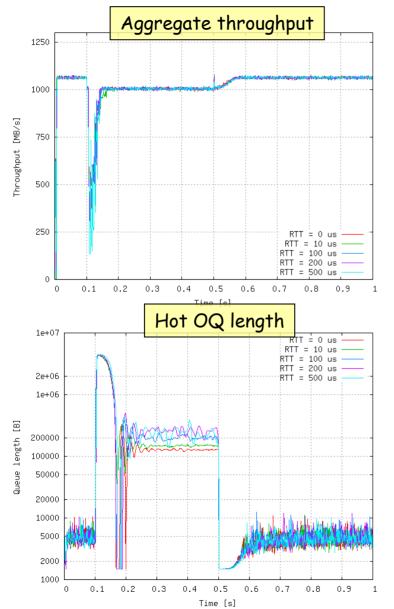

ECM

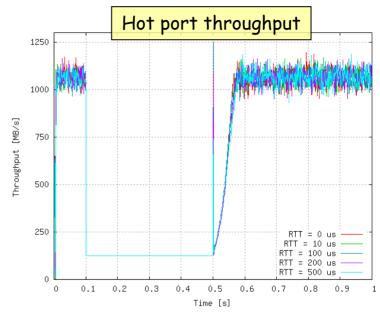

- W = 2.0
- $Q_{ea} = 75 \text{ KB} (= M/4)$
- $G_d = 0.5 / ((2*W+1)*Q_{eq})$
- $G_{i0} = (R_{link} / R_{unit}) * ((2*\dot{W}+1)*Q_{eq})$
- $G_i = 0.005 * G_{i0}$
- P_{sample} = 2% (on average 1 sample every 75 KB
- $R_{unit} = R_{min} = 1 \text{ Mb/s}$
- BCN_MAX enabled, threshold = 280 KB
- No BCN(0,0), no self-increase

E²CM (per-flow)

- W = 2.0
- $Q_{eq} = 15 \text{ KB}$
- $G_d = 2.5 / ((2*W+1)*Q_{eq})$
- $G_i = 0.025 * G_{i0}$
- P_{sample} = 2% (on average 1 sample every 75 KB)
- $R_{unit} = R_{min} = 1 \text{ Mb/s}$
- BCN MAX enabled, threshold = 56 KB

Results single-hop OG scenario (N = 16)

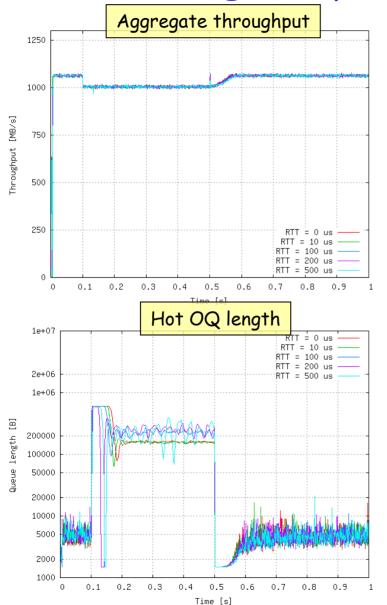


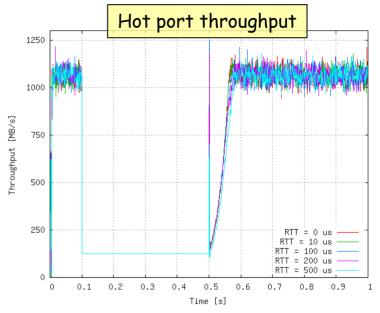


- Source- vs. destination-based (both mods 1 and 2)
- Switch PAUSE enabled/disabled
- No thresholding of OQ (unlimited within h/w boundaries)

Switch frame drops	Dst-based	Src-based
PAUSE on	0	0
PAUSE off	146,595	130,268

Results single-hop OG scenario - Impact of RTT





- Source-based (both mods 1 and 2)
- Switch PAUSE disabled
- Unlimited output queue length (hoggable)
- RTT = $[0, 10, 100, 200, 500] \mu s$

RTT (µs)	Switch frame drops
0	134,879
10	148,816
100	135,874
200	144,239
500	189,371

Results single-hop OG scenario - OQ limit

- Source-based (both modifications)
- Switch PAUSE disabled
- 600 KB limit on output queue length
- RTT = $[0, 10, 100, 200, 500] \mu s$

RTT (μ s)	Switch frame drops
0	16,083
10	14,230
100	11,116
200	7,171
500	11,300

Conclusions: Pat's Orlando Proposal Works...

- Source-based and destination-based E²CM are practically indistinguishable in terms of SH-OG performance
 - consequential for h/w implementation...
- Stability is achieved even with RTTs up to $500 \, \mu s$
 - However, mean queue level increases with RTT as consequence of additional transport lag
- In PAUSE-less mode frame drops* can be significantly (~10x) reduced by using per-OQ drop threshold
 - such, or more sophisticated, partitioning is recommended

^{*} An arguable pursuit (reducing loss rate w/o LL-FC) ...