Bruce Kwan \& Brad Matthews

March 13-14, 2007
IEEE 802.1Qau Plenary Meeting (Orlando, FL)

Overview

- Key Observations
- Simulation Setup
- Effects of QCN Enhancements
- Summary

Key Observations

- QCN offers a reduction in control messaging overhead
- 25-30\% reduction in control messages generated relative to BCN in output generated multiple hop scenario.
- Quantization of Fb (no self increase, fast recovery)
- 5-6 bits of Quantization Appears to be Sufficient
- Regardless of quantization, oversampling still provides the benefits of improving response time and reducing frame drops

Overview

- Key Observations
- Simulation Setup
- Effects of QCN Enhancements
- Summary

Topology and Workload

- Multi-stage Output-Generated Hotspot Scenario
- Link Speed = 10Gbps for all links
- Loop Latency = 16us
- Traffic Pattern
- 100\% UDP (or Raw Ethernet) Traffic
- Destination Distribution: Uniform distribution to all nodes (except self)
- Frame Size Distribution: Fixed length (1500bytes) frames
- Offered Load
- Nodes 1-6 $=25 \%$ (2.5Gbps)
- Nodes $7-10=40 \%$ (4Gbps)
- Congestion Scenario
- Node 7 temporary reduce its service rate from 10Gbps to 500Mbps between [50ms, 1050ms]
* Topology and Workload based on IBM Zurich's topology and workload as specified in Experiment \#1 found:
http://www.ieee802.org/1/files/public/docs2006/au-sim-Zurich-Hotspot-Benchmark-OG-MS-r2.pdf. Picture is from that presentation.

BROADCOM.

Conmeating
everythlng"

Parameters

- Switch Parameters
- Core switch and edge switches are all 4 port switches
- Buffer Size (B)
- 600Kbytes/Port
- Shared Memory Switch Devices, total switch memory size $=4$ *B
- BCN Parameters
- Frame Sampling
- Frames are periodically sampled (on avg) every 75KB (2\%)
- W is located at $C P(W=2)$
- $\mathrm{Qeq}=\mathrm{B} / 4$
- $\mathrm{Ru}=1 \mathrm{Mbps}$
- Gi (Initial)
- Computed as (Linerate/10) * [1/((1+2*W)*Q_eq)]
- Same as in baseline
- Gd (Initial)
- Computed as $0.5^{*} 1 /\left(\left(1+2^{*} W\right) * Q _e q\right)$
- Same as in baseline
- BCN-MAX
- Other BCN Enhancements
- No BCN(0,0)

QCN Enhancements to BCN

- Switch Computes Fb and Only Delivers Decrease BCN Messages
- Makes sense for switch to convey congestion information relative to its capabilities
- Switch only delivers Fb when $\mathrm{Fb}<0$ (decrease only messages)
- Fb may be quantized
- Association between switch and reaction point removed
- Enables BCN to operate without the need for RL-tags
- Reaction Point Self Increase
- Increase Factor (I)
- Amount of increase incrementally distributed over 1 second
- $\mathrm{R}(\mathrm{t})=\mathrm{R}(\mathrm{t}-1)+\mathrm{R}(\mathrm{t}-1) * \mathrm{I} * \tau$
- Self increases occur every τ

Overview

- Key Observations
- Simulation Setup
- Effects of QCN Enhancements
- Summary

BCN Message Reduction

- BCN w/ BCN-Max
- Frames are sampled every $75 \mathrm{kB}(2 \%)$
- No PAUSE
- Self-Increase Only
$-R_{t}=R_{t-1}+\left(R_{t-1} * I * \tau\right)$
- $\tau=10 \mu \mathrm{~S}$

By supporting self increase only, BCN messages may be reduced by -30% for the multihop output generated hotspot scenario.

Effects of Self-Increase on Queue Size

Total Drops 9009

Total Drops 9078

BCN with self increase only can result in underutilization. Increase factor may be used to minimize underutilization but can result in increased frame drops.

Total Drops 9590

Effect of Quantization on Buffer Occupancy (BCN with Fb Quantization)

- BCN w/ BCN-Max
- Frames are sampled every 75 kB (2\%)
- No Self-increase algorithms

With Baseline BCN and ONLY varying the degree of quantization of reported Fb signal and no self increase, 5 bits of quantization achieves reasonable performance.

Overview

- Key Observations
- Simulation Setup
- Effects of QCN Enhancements
- Summary

Summary

- Reduction in messaging can be achieved using selfincrease algorithms ($\sim 30 \%$ in simulated case)
- Self-increase algorithm can produce link utilization issues when selection of increase value is poor
- Quantization
- When quantizing Fb, 5-6 bits appears to be sufficient to achieve reasonable performance.
- Oversampling still provides enhancements even when quantizing
- Queue settling point can land higher than target Qeq
- As increase factor is raised

Next Steps

- Parameter sensitivity analysis
- Oversampling to reduce packet drops and improve convergence time
- Impact of reducing 'w'
- Impact of delay
- Binary Increase Fast Recovery algorithm

