
111

Network Interface Virtualization Review

Joe Pelissier
new-dcb-pelissier-NIV-Review-0109

222new-dcb-pelissier-NIV-Review-0109

Motivation

ServerServer ServerServer ServerServer

C
o

m
p

le
x
ity

Q
u

a
n

tity

As a general rule, we push
complexity up into the components
of which we have fewer (bridges),

and attempt to simplify the
components that appear in higher

quantities (NICs)

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

333new-dcb-pelissier-NIV-Review-0109

Motivation

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

C
o

m
p

le
x
ity

Q
u

a
n

tity

As virtualization and high
density servers are deployed,
we increase the number of

complex bridges in excess of
what use to be considered a

large number of NICs

VNICs VNICs

444new-dcb-pelissier-NIV-Review-0109

Motivation

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

C
o

m
p

le
x
ity

Q
u

a
n

tity

Goal: Extend the bridge into the blade
racks and hypervisors, reducing the
number of these complex devices.

Method: Define an “Interface Virtualizer”

(IV) that extends the bridge’s reach.
IVs are much greater in quantity than

bridges, therefore must be much simpler.

VNICs VNICs

555new-dcb-pelissier-NIV-Review-0109

Motivation

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

C
o

m
p

le
x
ity

Q
u

a
n

tity

Evolutionary deployment will
require support of a mix of

Interface Virtualizers, NICs &
Bridges (both physical and

within hypervisors)
N

IC

N
IC

VNICs VNICs

666new-dcb-pelissier-NIV-Review-0109

Requirements Summary

� Must be simple

Drive complexity towards the bridge and simplicity towards
the NIC

For example, ACL processing, CAM lookups, learning and
aging functions, etc.

� Must operate in a variety of configurations

Downlinks may be connected to other Interface
Virtualizers, bridges, or NICs

These devices may be virtual, instantiated together, or
physically separate

777new-dcb-pelissier-NIV-Review-0109

Anatomy of an IV fabric

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

IV Uplink Port: may
connect to an IV capable
bridge or an IV downlink

Bridges that connect to IV
Uplink Ports must be IV
capable (e.g. support the
VNTag and the VIC Protocol).

IV Downlink Port: may
connect to an IV Uplink
Port, a bridge, or a NIC
(virtual or physical). Note
that the bridge does not
need to be IV capable in
this case.

IVs may be cascaded. In
this case, the Downlink
Ports (virtual in this
example) act as ports of
the top level bridge.

Downlink ports are
assigned a Virtual
Interface Identifier (vif_id)
that corresponds to a
virtual interface on the
bridge and is used to route
frames down through IVs

Note: multiple Uplink Ports
connected to different
bridges or IVs are supported
and are described later in
this presentation.

888new-dcb-pelissier-NIV-Review-0109

Interface Virtualizer Basic Functions

� From NIC to Bridge

Add VNTag on ingress (indicating source IV port)

The Endstation does not add VNTags nor is it required to have any
“VN awareness” -Completely backwards compatible

Forward frame up the IV hierarchy to the bridge

� From Bridge to NIC

Froward frame down hierarchy to the NIC

Based on tag information

Replicate multicast frames

Filter the frame at the ingress port if it was sourced at the IV

Remove the VNTag at the final IV

From the “outside world”, the collection of an IV capable
bridge and its IVs appears as a single bridge. Other devices
connecting to this combination require no “IV” awareness

999new-dcb-pelissier-NIV-Review-0109

Goals of the VNTag

� For frames from the bridge to the VNIC, the tag should provide
a simple indication of the path through the IV(s) to the final
VNIC.

� For frames from the VNIC to the bridge, the tag should provide
a simple indication of the ingress port of the southern most IV.

� For multicast frames originating from somewhere else in the
network, provide a simple pointer to a "replication table"
within the IV.

� For multicast frames originating from one of the VNICs,
provide #3 plus an indication of the source VNIC to prevent
replication of the frame back to the source.

101010new-dcb-pelissier-NIV-Review-0109

Virtual Interface Identifiers

� Each downlink from an IV to a VNIC is, in effect, a bridge
interface

These are the physical instantiations of virtual interfaces on the
bridge itself

Each is identified by a 12-bit Virtual Interface Identifier (vif_id)

Assigned by the bridge to each IV downlink port

� In addition, each IV may be programmed with lists of downlink
ports (for use in multicast)

Lists are identified by a 14-bit vif_list_id

111111new-dcb-pelissier-NIV-Review-0109

VNTag Proposal

Ethertype d p Dvif_id or vif_list_id
l r ver Svif_id

Ethertype: TBD, identifies the VNTag

d: Direction, 0 indicates that the frame is traveling from the IV to the bridge. 1 indicates
the frame is traveling from the bridge to the IV

p: Pointer: 1 indicates that a vif_list_id is included in the tag. 0 indicates that a Dvif_id
is included in the frame

vif_list_id: Pointer to a list of downlink ports to which this frame is to be forwarded (replicated)

Dvif_id: Destination vif_id of the port to which this frame is to be forwarded. Two most
significant bits are reserved.

Note: the Dvif_id / vif_list_id field is reserved if d is 0.

l: Looped: 1 indicates that this is a multicast frame that was forwarded out the bridge
port on which it was received. In this case, the IV must check the Svif_id and filter
the frame from the corresponding port

r: reserved

ver: Version of this tag, set to 0

Svif_id The vif_id of the downlink port that received this frame from the VNIC (i.e. the port
that added the VNTag). This field is reserved if d=1 and l=0.

121212new-dcb-pelissier-NIV-Review-0109

Interface Virtualizer Operation

� From Northbound fames (Downlink to Uplink, d=0)

If no VNTag present, add one

Set Svif_id to vif_id of ingress port, all other fields set to 0

Forward to uplink

Support of multiple uplinks to be discussed later

131313new-dcb-pelissier-NIV-Review-0109

Interface Virtualizer Operation

� For Southbound frames (Bridge or uplink to
downlink)

If unicast: forward to downlink port
corresponding to Dvif_id

If multicast: forward to set of downlink ports
indicated by vif_list_id

If the downlink port’s vif = the frame’s Svif_id,
filter

If the downlink is not known to be connected to
another IV, remove the VNTag

Note that the size of the vif_id is intentionally chosen to be
small enough to use as an index into a forwarding table:

No table searches are required.

141414new-dcb-pelissier-NIV-Review-0109

Bridge use of VN_Tag

� On ingress

Learn MAC address to vif_id as part of normal bridge
learning function

� On egress: set VNTag as follows:

Set the Dvif_id based on the MAC Address

151515new-dcb-pelissier-NIV-Review-0109

Forwarding Tables

� VIF forwarding table

One entry per VIF_ID

May support up to 1024 unique VIFs

Indexed by Dvif_id

Entry points to downlink to be used

� VIF list table

One entry per vif_list_id

May support up to 4098 unique lists

Indexed by vif_list_id

Bit mask indicating which downlinks are to be used

Width of entry depends on number of downlink ports

161616new-dcb-pelissier-NIV-Review-0109

Support of Multiple Uplink Ports

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

� Required for:

Redundancy

Support of multiple fabric connectivity

� Achieved by:

Instantiating a VIF forwarding table and VIF
list table for each uplink port

Addresses “Southbound” frames

Each downlink port is associated with a
single uplink port

All frames received on that downlink port
are forwarded to the associated uplink port

Addresses “Northbound” frames

171717new-dcb-pelissier-NIV-Review-0109

Virtual Interface Control (VIC) Protocol

� Bridge configures all of the forwarding tables for each
downstream (i.e. cascaded) IV

� VIC Protocol provides this functionality

Independent instance of VIC is executed for each Uplink Port (or
Uplink Port Aggregation)

� No frames may flow through an IV until the IV is configured by
the VIC protocol

� VIC Protocol operates between the bridge and the VIC
controller in each IV

A MACSEC SA may be established between the bridge and each
VIC Controller to secure the VIC Portocol

VIC Controller acts as an endstation to the bridge to establish the
SA

181818new-dcb-pelissier-NIV-Review-0109

MACSEC and VNTag

� The collection of IVs and the IV Capable bridge
operate as a single bridge

� An endstation wishing to execute MACSEC
operates identically as if it were connected directly
to a bridge

� Within the “IV Cloud”, the SA is actually
established between the IV capable bridge and the
endstation

The IVs pass the secured frames, including the SecTAG
transparently between the endstation and the IV capable
bridge

Much like a provider network would do…

191919new-dcb-pelissier-NIV-Review-0109

Uh…but wait a minute…

� Doesn’t that mean that the VNTag is not protected by
MACSEC?

Yes, again it works much like it would in a provider network

� Does this cause a security risk?

No, and here’s why:

We need consider only an attack on an IV to IV or IV to IV capable
bridge link (these are the only ones that have VNTags)

If the VNTag is modified and the MAC address is not

The frame is misdelivered (which can occur anyway)

Misdelivery detected by mismatch of MAC address

If the VNTag is modified and the MAC address is correspondingly
modified

MACSEC detects the corruption of the MAC address

202020new-dcb-pelissier-NIV-Review-0109

Can we use the SecTAG?

� It has been proposed that the SecTAG could be
used to carry the information in VNTag and thus
eliminate the need for a new tag

Note that these functions operate independently:

One may choose to use virtualization alone (the most
common case), MACSEC alone, or both together

All of these cases must be reasonably handled

212121new-dcb-pelissier-NIV-Review-0109

SecTAG for Virtualization

� Paul Congdon and I have worked together to
develop what we consider is the most optimum
approach using SecTAG

We disagree on whether using SecTAG provides a better
solution than having an independent VNTag ☺☺☺☺

� The main adaptation of SecTAG is to include the
Dvif_ID/vif_list_id and Svif_ID

In other words, essential fields of VNTag (unrelated to
security) hitch a ride in the SecTAG

There are a number of secondary adaptations that I will
address in a bit…

222222new-dcb-pelissier-NIV-Review-0109

Adapting the SecTAG

� Note that the SecTAG contains a 64-bit SCI that contains:

A 48 bit MAC address

A 16 bit virtual port number

� The SCI identifies the security association

Must be unique between all SAs on a given bridge port

The endstation allocates a port number per SA it creates

The MAC address ensures SA indentity uniqueness across all
devices connected to the bridge

232323new-dcb-pelissier-NIV-Review-0109

Keeping the SCI unique

� Note that the MAC address is globally unique and
therefore ensures SA identity uniqueness

However, global uniqueness is not required, just
uniqueness across the bridge is required

Remember that each NIV port is assigned a vif_id, that
happens to be unique for a given bridge port

If communicated to the end station, this may be used in the
SCI instead of the MAC address (or at least the OUI part of
it)

It’s a lot smaller thus freeing up other bits in the SCI

242424new-dcb-pelissier-NIV-Review-0109

The New SCI:

� Eliminate the OUI portion of the MAC address (frees 24 bits)

� Keep the virtual port number (16 bits)

� Add the Dvif_id/vif_list_id (reduce to 12 bits)

� Add the Svif_id (12 bits)

� Total: 64 bits

� Note: this eliminates several control bits that are in VNTag

We can live without them (left as an exercise to the reader)

� Increment the two bit version field to indicate the presence of
this new SecTAG format

252525new-dcb-pelissier-NIV-Review-0109

Endstation use of the SecTAG / VNTag

� SecTAG case:

If an endstation is doing MACSEC and virtualization, execute a yet
to be defined protocol to discover the vif_id of the IV port to
which you are attached (probably just a new field in the MACSEC
negotiation).

If an endstation is doing neither virtualization nor MACSEC, it
adds no tag

If an endstation is doing MACSEC but not virtualization, it uses
the old version of the tag (it needs to do this since it will not have
a vif_id for uniqueness)

An endstation that wishes to support virtualization must support
both forms of the SecTAG

Possibly breaks existing implementations / designs in flight.

If an endstation is doing virtualization but not MACSEC, do not
include a SecTAG (the IV will do it for you)

If an endstation is doing virtualization and MACSEC, include the
new form of the SECTag

262626new-dcb-pelissier-NIV-Review-0109

Endstation use of the SecTAG / VNTag

� Compatibility alert for the SecTAG case:

Use of the SCI is currently prohibited for an endstation

At least this is the case if you set the ES bit

For virtualization it now becomes required

The old tag format could simply use the same MAC
address in the frame header and SCI

The new format no longer does this and requires additional
information to be included

The version field will change

Both versions may need to be supported

272727new-dcb-pelissier-NIV-Review-0109

Endstation use of the SecTAG / VNTag

� VNTag case:

None. Endstations have no awareness of the presence of
an IV; it just looks like a bridge port

Of course, an endstation implementation may elect to embed
IV functionality, but the model remains the same

If the endstation doing MACSEC, include the current
version of the SecTAG, otherwise no SecTAG.

Never add a VNTag (the IV always takes care of)

282828new-dcb-pelissier-NIV-Review-0109

Endstation Backwards Compatibility

� SecTAG case:

An endstation that wishes to use MACSEC in an virtualized
environment must be “virtualization aware”

It must be capable of generating the new form of SecTAG

An endstation that wishes to be “virtualization capable” probably
must support both versions of the SecTAG

May be deployed in a non-virtualized environment with legacy
bridges that do not understand the new SecTAG

Probably requires a discovery mechanism in MACSEC to
determine which version of the SecTAG is supported and which
should be used

� VNTag case:

Endstations are not required to have any “virtualization
awareness” and the SecTAG does not change

292929new-dcb-pelissier-NIV-Review-0109

Bridge Backwards Compatibility

� SecTAG approach:

Probably will be required to support both versions of the
SECTag

True even if the bridge does not intend to support
virtualization

The new version is required to claim compliance with the
latest standard, the old version is required for connectivity to
legacy devices.

� VNTag approach

No changes to SECTag

Bridges that do not support virtualization interoperate in IV
environments without any virtualization awareness

Fully Interoperable

303030new-dcb-pelissier-NIV-Review-0109

IV use of the SecTAG / VNTag

� SecTAG case:

If the endstation is using MACSEC with the old tag format

Connectivity fails, there is insufficent data for the bridge to
learn the ingress IV port

If the endstation is using MACSEC with the new tag format

Verify correct Svif_id is included in the SecTAG

Do not add any additional tags

If the endstation is not using MACSEC

Add a SecTAG with the Svif_id

� VNTag case:

Add the VNTag

313131new-dcb-pelissier-NIV-Review-0109

The MACSEC cipher

� SecTAG approach:

If virtualization is being used with MACSEC, then the
SecTAG approach requires a method to express a “null
cipher”

This would be new to the SecTAG format

Implementation of a “null cipher” implies that the Integrity
Check Value (a 16 octet field) becomes optional

This would need to be specified and new implementations
would need to accommodate this

Probably a compatibility issue for existing MACSEC
implementations / designs in flight

� VNTag approach:

No impact

323232new-dcb-pelissier-NIV-Review-0109

The SecTAG SL field

� SecTAG approach:

The SecTAG contains an SL field that contains the length of the
frame if it is less than 48 octets

This has no value for a virtualization only application

However, it is probably not worth making it optional

Therefore, an IV will need to calculate this and insert it in the
SECTags it creates

Bit of a pipeline headache in the ASIC since you need to buffer a
part of the frame before you can create the SECTag header

� VNTag approach

The IV does not need to deal with SL

All of the data required to construct the VNTag is known before a
frame arrives

333333new-dcb-pelissier-NIV-Review-0109

The SecTAG PN Field

� SecTAG approach:

The SecTAG contains a packet number field that
increments for each packet transmitted within an SA

This serves no purpose in a virtualization only application

We would need to specify that when the null cipher is in
use, this field is either omitted, reserved, or at least
ignored.

Possible compatibility issue with existing MACSEC
implementations / designs in flight

� VNTag approach:

No impact

343434new-dcb-pelissier-NIV-Review-0109

Architectural Interdependencies

� SecTAG approach

Generates a dependency between the functions that
implement MACSEC and those that implement
virtualization

These are frequently in difference chips

Often on different line cards

Frequently developed by engineers with significantly different
skill sets

� VNTag approach

No significant dependency

353535new-dcb-pelissier-NIV-Review-0109

Specification Interdependencies

� SecTAG approach

Generates a dependency between the virtualization
specification development and the security specifications

� VNTag approach

No significant dependency

� Once we create this dependency, we live with it
forever

Already making a significant addressing compromise

16k multicast + 4k unicast reduced to 4k total just to cram it
into the SecTAG

The natural evolution of these independent technologies
will forever require coordination between the two

363636new-dcb-pelissier-NIV-Review-0109

Deployment Interdependencies

� MACSEC and virtualization are independent from a
deployment perspective

In data centers, it seems likely that the most common deployment
will be virtualization without MACSEC

Outside data centers, it seems likely that MACSEC will be more
commonly deployed than virtualization

And, of course, there will be deployments of both

� SecTAG approach:

Deployment of MACSEC impacts deployment of virtualization, and
vice versa

� VNTag approach:

Deployment of MACSEC and virtualization are independent

373737new-dcb-pelissier-NIV-Review-0109

Observation

� It seems that we are paying a pretty high cost to optimize the
case of simultaneous deployment of MACSEC and
virtualization

Arguably, of the four combinations, this is will be the least
prevalent

� VNTag alone is more optimal for a virtualization only
deployment

� Having one form of SecTAG is more optimal for a MACSEC
deployments

� Having both tags really is not that big a deal if you want both
of these functions

If multiple tags is a concern, we could expand the scope of this
effort to include VLAN, priority, and CN indications in the SecTAG
;-)

383838new-dcb-pelissier-NIV-Review-0109

Thank You!

