802.1AS Clause 13 Overview

Yuanqiu Luo yluo @huawei.com

Huawei Technologies

March 2010

Agenda

- What is EPON
- Why time sync over EPON
- What challenges
- How to sync time over EPON
- What performance
- Clause 13 structure and status

EPON

FTTx broadband access

1G symmetric, 10G symmetric, 10G/1G asymmetric

Management and control

- TDM (downstream), TDMA (upstream)
- MPCP
- Slow Protocol (Eth OAM, OSSP)

EPON for full service access

EPON as wireless backhaul

- Efficient and cost-effective in carrying cellular data to remote BS
- Challenge: providing time synchronization over EPON
 - ToD accuracy in microseconds is the mainstream time sync requirement of wireless technologies
 - EPON Std does not specify time sync issue

Table 1: ToD requirements of wireless technologies [1]

Wireless technologies	Time-of-day requirement
CDMA2000	3us
TD-SCDMA	3us
WiMAX TDD	1us
FDD LTE	4us

[1] ITU-T G.987.1 Recommendation, 10-Gigabit-capable passive optical networks (XG-PON): General requirements, ITU-T, 2009.

EPON time sync: Why not IEEE 1588?

- IEEE 1588 performs perfectly in some systems. However, in the case of EPON, delays in downstream and upstream are asymmetric
 - Frame queuing (on the order of 100 microseconds)
 - DBA cycle (on the order of milliseconds)
 - PHY link asymmetry (different wavelengths)
 - Transparent delivery of 1588 cannot distribute precise time

EPON time management: MPCP counter

MPCP has its own time management facility

- Both the OLT and ONT have a local MPCP counter
 - 32 bits long
 - 16ns granularity
 - Roll over every ~68.72 seconds
- Measured by the OLT's line clock
- This counter is the reference for the EPON timestamps
 - MPCP message timestamp
 - Registration, ranging, RTT measurement and update
- This counter is the reference for the EPON upstream grants
 - ONU reports upstream bandwidth requirement
 - OLT generates collision-free grants of upstream time

EPON time sync: How

- OLT (clock master), ONUs (clock slaves)
- Relate OLT MPCP counter with synced time
- Compensate DS/US link asymmetry
- Relate ONU MPCP counter with synced time

EPON time sync: Steps

Timing reference

- The OLT selects an MPCP timestamp value, X, that will be used as a reference
 - Any timestamp value may be chosen, provided it is relative to the current epoch of the MPCP counter
 - An MPCP message with timestamp X may or may not be transmitted
- All of the time values correspond to timestamps are referenced to the MAC control sublayer
 - MAC control sublayer is where the MPCP counter locates

Link asymmetry compensation

OLT (clock master) calculates the ToDx,i based on ToDx,o using

$$ToD_{X,\,i} = ToD_{X,\,o} + \frac{RTT_i}{rateRatio} \cdot \frac{n_{down}}{(n_{up} + n_{down})},$$

- ToDx,i: time-of-day at which a downstream MPCP message that would carry the timestamp X would have arrived at the clock slave
- ToDx,o: time-of-day at which a downstream MPCP message that would carry the timestamp X would have departed the clock master
- RTT_i: round-trip time measured by the clock master (OLT) for clock slave I (ONU _I)
- $-n_{up}$: effective index of refraction for upstream wavelength light of the optical path
- ndown: effective index of refraction for downstream wavelength light of the optical path
- rateRatio: rateRatio member of the most recently recevied MDSyncSend structure

Value pair delivery

OLT can send value (X, ToD_{X,i}) to ONUi via

- Slow Protocol
 - OSSP (organization-specific slow protocol) message
 - Info to be carried
 - $-(X, ToD_{X,i})$, sourcePortIdentity, logMessageInterval, rateRatio, gmTimeBaseIndicator, lastGmPhaseChange, scaledLastGmFreqChange
 - Message size 75 bytes
 - Up to 10 messages per second
 - 8 messages per second is required

Time adjustment at clock slave

 After clock slave (ONU) receives the value pair, it can compute the grandmaster time, ToD, at its local counter time S; ToD is given by

$$ToD = ToD_{X,i} + \frac{[(S-X) \bmod (2^{32})](16 \text{ ns})}{rateRatio},$$

- Clock slave could adjust the grandmaster time
 - Immediately when receiving the value pair
 - Or a while after receiving the value pair

Performance analysis

- MPCP counter inaccuracy
 - With 16ns granularity, counter offset is up to ± 8 ns
- RTT drift tolerance
 - TDMA scheme tolerence is specified as 12 Time_quanta, which is equal to 192ns
 - This means up to 96ns tolerance to RTT drift
 - and typically much better!

Performance analysis

Assume ndown=N and △ N= nup - ndown, the index correction

factor is
$$\frac{n_{down}}{n_{up} + n_{down}} = \frac{n_{down}}{2n_{down} + (n_{up} - n_{down})}$$
$$= \frac{N}{2N + \Delta N}$$
$$\approx \frac{2N^2 - N\Delta N}{4N^2}$$
$$= \frac{1}{2} - \frac{\Delta N}{4N}.$$

- Zero order analysis results in the index correction factor of 0.5 [2]
- 1st order analysis gives an index correction factor of 0.500085, which is equivalent to 17ns propagation difference [2]
- In 2nd order analysis, the index correction factor varies from 0.500041
 to 0.500090, meaning up to 5ns propagation difference [2]
- Therefore, 1st order analysis dominates propagation difference [2]

[2] ITU-T G.984.3 Recommendation Amendment 2, Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification, ITU-T, 2009

Performance analysis summary

Table 2: EPON time sync performance

Item	Impact
MPCP counter	≤ 8ns
RTT drif	≤ 96ns
Fiber propagation difference	≤ 17ns

EPON time sync supports accuracy on the order of 100 nanoseconds

Clause 13 structure

Clause 13 status

- Current Clause 13 in 802.1AS was drafted in May 2009
- Context was well cooked in working group ballot and recirc
- Commenters
 - Geoffrey Garner (Samsung)
 - Ryan Hirth (Teknovus)
 - Yuanqiu Luo (Huawei)
 - Dave Olsen (Harman)
 - Bob Sultan (Huawei)
 - Yuehua Wei (ZTE)

Table 3: Clause 13 comments

Ballot	Total comments	Serious comments
Working group, D6.1	27	10
1 st recirc, D6.2	92*	6
2 nd recirc, D6.6	49	3
3 rd recirc, D6.7	0	0

^{*} Most comments are due to the information loss when converting WORD file into FrameMaker file