

LLDP+ and VDCP: VSI Discovery and Configuration Protocol – a Proposal

v46 January 21, 2010

Caitlin Bestler, Aprius

Uri Elzur, Broadcom Manoj Wadekar, Qlogic llango Ganga, Intel

1/22/2010 IEEE DCB / EVB 0

VDCP/LLDP+ Goals

- The NEED: address the emerging needs of VSI Discovery in the Data Center with ample headroom and flexibility
- The proposed Approach: Re-use existing protocols and architecture to minimize development time and effort at the IEEE and in products
- A solution: Upgrade existing protocols (e.g. LLDP) to specifically address VSI Discovery needs
- Provide
 - Scalability
 - Efficiency
 - Timeliness

VSI Discovery in the context of EVB

Configuration steps and protocols:

• DCBX (Optional) over LLDP

- EVB Discovery is an ordered set of protocols
 - Multi Channel (Optional) -

over LLDP

- Discovery of Host Switching (VEPA, VEB, Direct Access, PE) over LLDP
- VSI Discovery and Configuration

⇒ FOCUS of this presentation

1/22/2010 IEEE DCB / EVB 2

Consensus and New requirements

3

Consensus?

- To have ALL EXPLICIT VSI state in one message, may require more than 1500B
- No more than one 1500B message, in each direction, outstanding between link partners at any time
 - Stay away from creating a need for ACK or Sequencing and other Transport attributes
 - Allow for Scalability from small to very large
 - Allow both parties resources to dictate frame exchange rate
- Stay as close to IEEE 802.1AB-REV LLDP as possible but extend where needed
 - Must run IEEE 802.1AB-REV LLDP anyhow for DCBx
 - As much re-use of code/HW of existing LLDP implementations for VDCP
- There are limits to number of VSI state changes/Second that can realistically be supported by HV/Server/Switch/Network/Storage/Management subsystems
- LLDP can be used for VSI Discovery & Configuration, BUT some bytes may be consumed by Mandatory and Optional TLVs => not an issue if LLDP+ uses a different EtherType

New Requirements

- Discovery and Configuration exchange protocol
- Allow VSI State exchanges with minimal overhead (eliminate unneeded TLVs)
- Ability to communicate a Digest of all VSI state in a TLV that is < (or even <<) 1500B
- Allow for faster reaction time than LLDP, but allow for partner controlled rate
- Solution space: Require a completely new protocol or use IEEE 802.1AB-REV as a basis with minor adjustments?

1/22/2010 IEEE DCB / EVB

VDCP / LLDP+

(single direction shown)

Notes:

Reliability: fast re-xmt

- VDCP creates a VDCPDU (contains VSI Config TLV with all VSI State Change Requests <MTU, along with a Stable State TLV). VDCP updates the Local MIB and informs LLDP+ of "Local MIB Change" event.
- 2 LLDP+ transmits the new PDU due to LOCAL MIB Change event.
- ILDP+ receives the PDU and informs VDCP of a "Remote MIB Change". VDCP consumes VDCPDU, MAY update its local VSI and configure accordingly. VDCP may update the Local MIB and informs LLDP+ of any "Local MIB Change" event.

VDCP - Bridge response

(single direction shown)

- Bridge's VDCP state machine creates a VDCPDU with the VSI Config Request (VSI State MAY be updated!) and the Stable State TLV (Bridge may unilaterally DEASSOCIATE VSIs).
- VDCP updates the Local MIB and informs LLDP+ of "Local MIB Change" event. VDCPDU is transmitted immediately.
- LLDP+ receives the PDU and informs VDCP of a "Remote MIB Change". If Bridge provided new info in the VDCPDU, Station MUST reflect this new state back to the Bridge in the first next VDCPDU it transmits.

3

• Station replaces VSI's in VSI Config TLV after VSI reach Stable state (A or D) or may add VSI's if outstanding VSI < SC-max

5

VDCP/LLDP+ Exchanges Example

Legend: VSI Config TLV (x,x,...x), Stable State TLV [x,x,...x]

1/22/2010

IEEE DCB / EVB

VDCP/LLDP+ Exchanges Example

Legend: VSI Config TLV (x,x,...x), Stable State TLV [x,x,...x]

1/22/2010

IEEE DCB / EVB

VDCPDU Format (A starting point...)

Frame format for per channel exchanges [B]

EVB Status -

- CONFIG REQUEST
- CONFIGURED
- CONFIG REQUEST NACK
- RESET REQUEST
- RESET

VDCP State*** -

- ASSOCIATE REQUEST
- ASSOCIATED
- ASSOCIATE REQUEST NACK
- DEASSOCIATE REQUEST
- DEASSOCIATED

Bytes VSI Configuration TLV*** -2 • VSI index (0 ... V-n) 2 DB index 1 **PPID** 18 4 MAC address 6 **VLAN** list 4 VSI State VSI index 1..... 18 VSI index X, 18 VSI Stable State TLV $(0, V-n) - A/!D_0, A/!D_1, ..., A/!D_{V_n}$ < 128**

As TLV work is going on, only those needed for LLDP+/VDCP are mentioned here

- A TLV is limited to 512B. Allow for multiple VSI Configuration TLVs in one VDCPDU to save overhead or: keep the existing SubType headers (2B per VSI)
- Station initiates VSI Configuration TLV and Bridge responds. Both can initiate Stable State TLV

^{*} In some cases SC-max can be equal to V-max. SC-max MUST be set to ensure VDCPDU < MTU

^{**} for 1024 VSI

^{***} Can be extended to incorporate additional states

VDCPDU Capabilities Format (A starting point...) Frame format for per channel exchanges [B]

• Data base identifier/s (n)

n*16

OPTIONAL: configurable number of bits per VSI in the Stable State

Next Page – a more scalable VDCPDU

- Motivation: Bridge may experience varying latencies for processing some VSI state change request (e.g. Port Profile DB is distributed).
- Motivation: a Station with a very large number of VSI, may wish to get a high end Bridge to configure a larger number faster
- 2 options to support Next Page are presented below

A. Next Page - optional mechanism

- MECHANISM: Allow for a larger set of VSI to be in-processing as compared with limit of number of VSI state that fits into a VSI Config TLV
 - For 1500B MTU, basic VDCP allow for ~80 VSIs to simultaneously change state
- Station may be allowed to send new VSI in the VSI Config TLV
 - AFTER: Bridge has sent back to Station a VDCPDU containing earlier sent VSI-s and an indication it has the resources to get more requests
 - AS LONG AS: total number of outstanding VSIs is smaller than SC-max

VDCP/LLDP+ Next Page Exchanges Example (n=64)

Legend: VSI Config TLV (x,x,...x), Stable State TLV [x,x,...x]

1/22/2010

VDCPDU Format (with Next Page)

Bytes

2

2

2

2

2

2

2

4

6

4

17

17

< 128**

17

Frame format for per channel exchanges [B]

VDCP Mandatory EtherType TLV

VDCP TLVs

End TLV

Channel Number (opt.)

EVB Status -

- CONFIG REQUEST
- CONFIGURED
- CONFIG REQUEST NACK
- RESET REQUEST
- RESET

VDCP State*** -

- ASSOCIATE REQUEST
- ASSOCIATED
- ASSOCIATE REQUEST NACK
- DEASSOCIATE REQUEST
- DEASSOCIATED
- * In some cases SC-max can be equal to V-max. SC-max MUST be set to ensure VDCPDU < MTU
- ** for 1024 vPorts
- *** Can be extended to incorporate additional states

B. Next Page – 2 pages w/ implicit Flow Control

- MECHANISM: Bridge guaranteed storage capacity is doubled to 2 * MTU @VDCP
- No change to LLDP+ operation
- Station may send the 2nd page and
 - It triggers the same R_MIB change event
 - it is guaranteed to be stored @VDCP
- Station will only move to a 3rd page after the Bridge's VDCP has indicated a Local MIB change to its LLDP+, in turn triggering sending the 2nd Page back to the Station

VDCP / LLDP+ with Next Page (implicit Flow Control)

(single direction shown)

- VDCP creates a VDCPDU (contains VSI Config TLV with all VSI State Change Requests <MTU, along with a Stable State TLV). VDCP updates the Local MIB and informs LLDP+ of "Local MIB Change" event.
- LLDP+ transmits the new PDU due to LOCAL MIB Change event.
- LLDP+ receives the PDU and informs VDCP of a "Remote MIB Change". VDCP consumes VDCPDU, MAY update its local VSI and configure accordingly. VDCP may update the Local MIB and informs LLDP+ of any "Local MIB Change" event.

VDCP/LLDP+ Next Page Exchanges Example (2nd Option) (n=64)

Legend: VSI Config TLV (x,x,...x), Stable State TLV [x,x,...x]

1/22/2010

LLDP+

- Allow re-use of existing LLDP implementations with a potential parametric changes
 - LLDP+ is identified by a new EtherType or different version number

Like LLDP

- Addressing and TLV formatting
- Only one outstanding message in each direction
- Fast Re-xmt for reliability
- Used to convey local configuration information to a link partner
- Configuration information is exchanged by an external State Machine (DCBX, VDCP)

Unlike LLDP

- Optional LLDP TLVs are not carried. Mandatory (TBD)
- Increased Credit on number of messages / Second

Summary

EASE of STANDARDIZATION:

LLDP+ may require less standardization effort for 802.1 WG

MEETING THE NEED

- LLDP+ and VDCP address the needs of VSI discovery
- No Need for a new "Transport" protocol

FASE OF IMPLEMENTATION

- LLDP+ may be implementation friendly for LLDP capable DCB devices
 - High likelihood that existing LLDP implementations may be able to adapt to LLDP+
- Station and Bridge control resources needed

TIME TO MARKET

Adopting LLDP+/VDCP for VSI Discovery provides Faster Time to Market