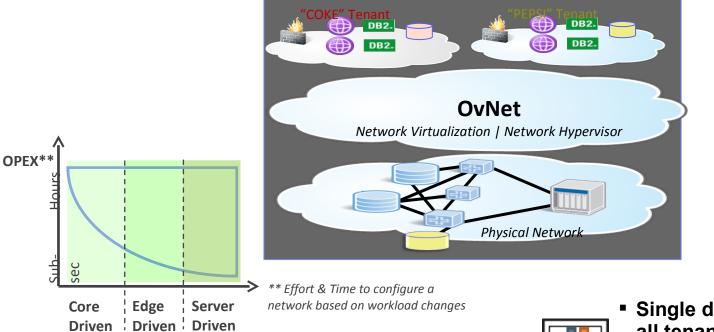
DCB for Network Virtualization Overlays

Rakesh Sharma, IBM Austin IEEE 802 Plenary, Nov 2013, Dallas, TX

- Stanford-Defined Networking
- "Software-Defined Networking"
- "Sexy-Defined Networking Networking is cool again"
- Isn't it OpenFlow? Or is it Network Virtualization Overlay Network e.g. VxLAN and NvGRE?"
- "Oh Yeah we're building an SDN Chip"
- "Hmm... Still Don't Know!"


Reference: Adapted from: Jayshree Ullal of Arista's Chart....

Summary of OvNet Value

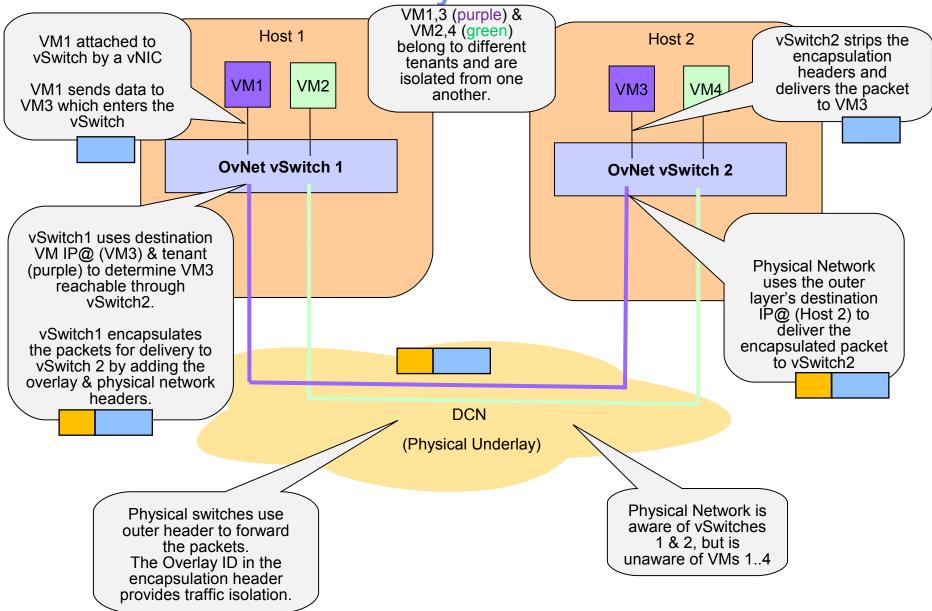
- Wire-once / Configure-once physical network within & across DCs
 - Server Software virtualizes physical network
 - Physical network becomes simple interconnect

Extreme scale (Lower CAPEX)

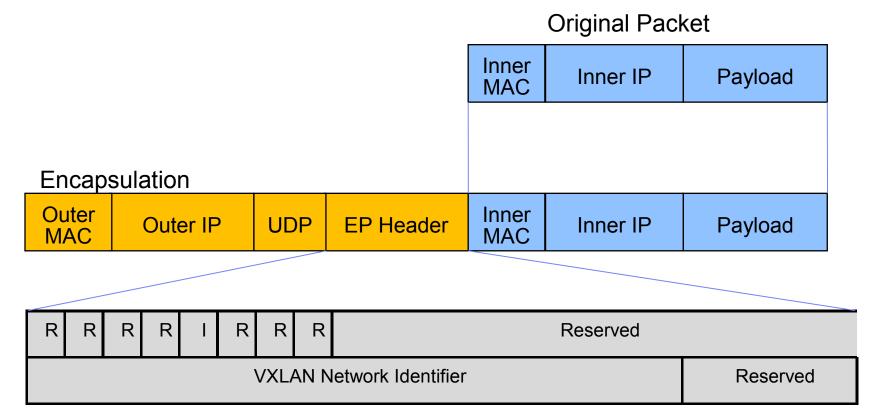
- Server computing is cheaper
- Cheaper physical network (smaller tables)
- Less control load on network

Dynamic provisioning (Lower OPEX)

- Multi-tenant, layer-3 network all the way to the VM
- Easy sharing of network resources
- Distributed network & security applications above overlay

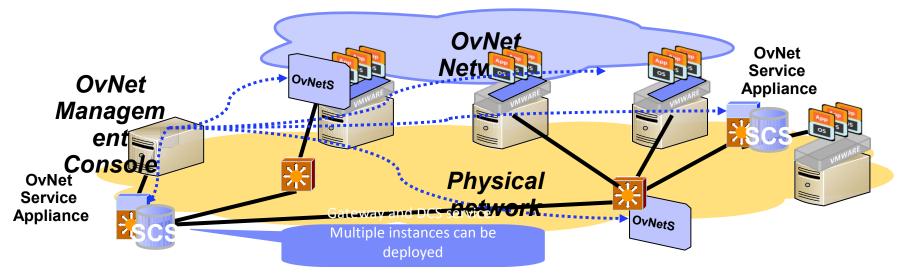

Single dashboard view across all tenants (Lower OpEx)

•Comprehensive monitoring

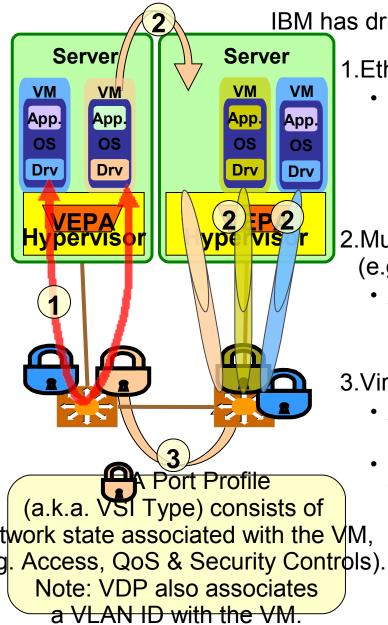

•Easier reporting and billing

 Aligns roles and work in the data center (Lower OpEx)

OvNet Overlay Network



OvNet Encapsulation - VXLAN based Example


Encapsulation Protocol (EP) Header (e.g. VXLAN based)

OvNet Network Technology Components

- OvNet Management Console
 - Provides GUI and APIs for management of OvNet network, groups and policies
- OvNet Switches (OvNetS)
 - Provides UDP based overlay (header format same as VXLAN)
 - Performs data and some control plane functions
 - Embedded in Servers (as vSwitch) or in Access Switches or EOR/Aggregation switchs.
- OvNet Service Appliance
 - Distributed Connectivity Service (DCS):
 - discovers & disseminates VM location (physical server)
 - maintains policy (e.g. allow, deny, insert service appliance) and works with OvNet switches to apply policy
 - Gateway Service: Connectivity to non-OvNet networks

Ethernet EVB Standards (IEEE 802.1Qbg)

IBM has driven automated network state migration standards:

- 1. Ethernet Virtual Bridging (EVB) Protocol
 - Defines where VM-VM communication is performed:
 - •Within server through Virtual Ethernet Bridge (VEB); or
 - •By external switch, through Virtual Ethernet Port Aggregator (VEPA).
- 2.Multi-channel Protocol
 - (e.g. IBM's pre-standard Virtual Fabric)
 - Allows a mix of internal (VEB) and external (VEPA) based switching approaches on the same server physical port.

3. Virtual Station Interface (VSI) Discovery Protocol (VDP)

- Automates creation, migration and removal of network state that is associated with a Virtual Machine.
- Enables port profiles to dynamically migrate with a VM when that VM migrates.

IEEE 802.1Qbg/BR Enhancement Proposal

Motivation

- SDN Overlay Networking has tremendous value proposition.
- · OvNet has large mindshare, customer attractiveness and industry momentum
- IEEE 802.1Qbg and IEEE 802.1BR standardize EVB, multi-channel and VDP.
- IEEE 802.1Qbg and IEEE 802.1BR currently unaware of OvNet
- IEEE 802.1Qbg and IEEE 802.1BR will bring number of advantages to OvNet
 - Configuration Automation of adjacent bridges
 - Exploit Adjacent Bridge capabilities (ACLs, QoS, Traffic Monitoring, Shaping etc.)
- Proposal
 - Small updates to IEEE 802.1Qbg/IEEE 802.1BR to accommodate Overlays
 - These updates should support:
 - When OvNet enacapsulation/de-encapsulation is occurring in the stantion embedded EVB and
 - When OvNet enacapsulation/de-encapsulation is occurring in the adjacent bridge.
 - Update EVB TLVs to support OvNet capable vSwitches.
 - Update VDP TLVs to support VN (Virtual Network) Identification and Encapsulation Type.
 - Others