1588 Transparent Clock use case

Pat Diamond Lars Ellegaard Januar 2013

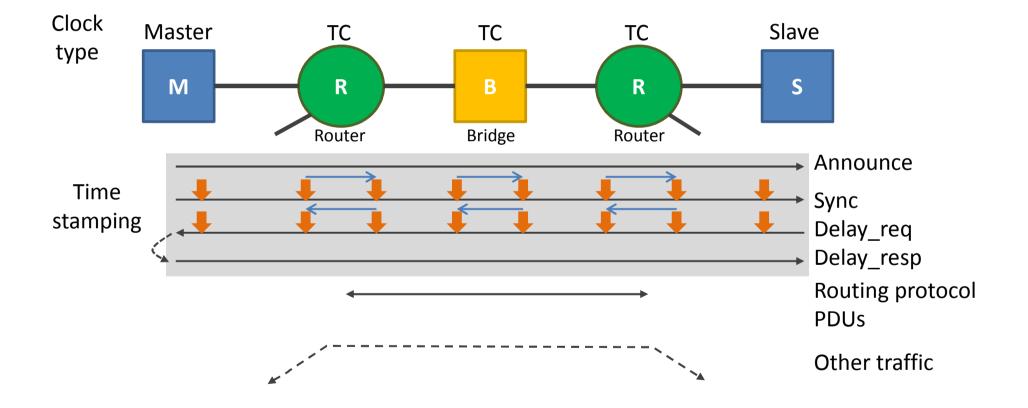
Transparent Clocks are 2 point Sensors

- Only function is measurement of packet residence on 1588 packets.
- Transport Path of TC without knowledge of each other.
- No TC generated packets, no TC nodal identity.
- Development of 1588 version 3 is about to begin and it is critical to be aligned to other relevant standards.

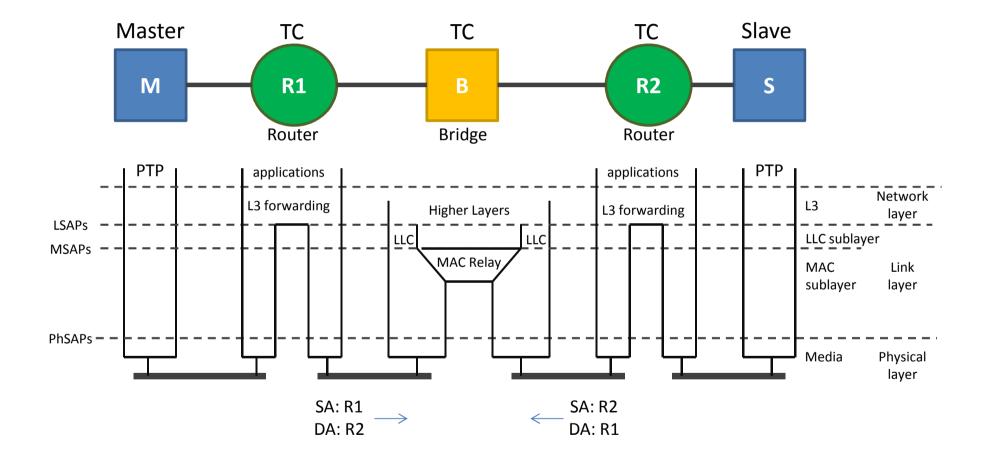
Transparent Clocks can be critical in GPS backup networks

- GPS vulnerability is a driving force behind on path support deployments.
- Market forces are pushing for TaaS capability

– TaaS – Timing as a Service


- Deployments are occurring with current systems.
- Goal of this discussion is to elicit ideas and support from 802.1.

Transparent Clock - status


Protocol stack	802.1 bridging	L3 forwarding
ETH/PTP UC	TC valid w/SA replacement. Requires PTP:ClockIdentity for multiple Master, or Slave separation	N/A
ETH/PTP MC	Same as above	N/A
ETH/IPv4/UDP/PTP UC	TC invalid	TC fully supported
ETH/IPv4/UDP/PTP MC	??	TC fully supported
ETH/IPv6/UDP/PTP UC	TC invalid	TC fully supported
ETH/IPv6/UDP/PTP MC	??	TC fully supported
	Network scenario in next slides	

Network scenario in next slides

Network Scenario (E2E TC)

Layer model

A deployment scenario

- Bridge installed
- Routers 1 and 2 are physically connected via bridge
- ARP establish MAC/IP-address binding
- TC is enabled on bridge ports, then what should be the next step?
 - Swap SA on R1-R2 connection? (security issues: SA/SIP binding?)
 - All frames w/DA=R1 or R2 to higher layer?
 - Filter ingress; associate arrival time with frame through MAC relay function; update on egress?