Follow-up on Peristaltic Proposal

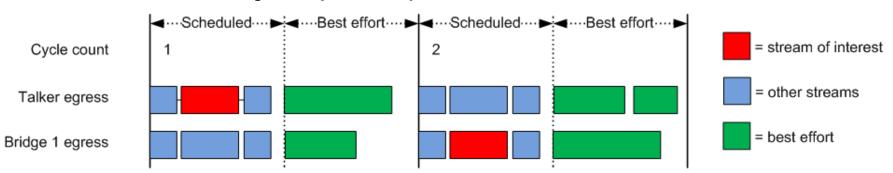
Rodney Cummings National Instruments

IEEE 802.1 TSN, January 2013, Vancouver

Introduction

- Follow-up on proposal for peristaltic transport
 - <u>http://www.ieee802.org/1/files/public/docs2012/new-avb-mjt-back-to-the-future-1112-v01.pdf</u>
- Use 802.1Qbv scheduling to improve SRP streams
 - Deterministic delays for all streams
 - Delay scales with link speed
- New stuff: Bridges are cycle aware
 - Time-aware tags on ingress (for cycle count)
 - Two egress queues per traffic class (even/odd cycle)
- This presentation explores the new stuff

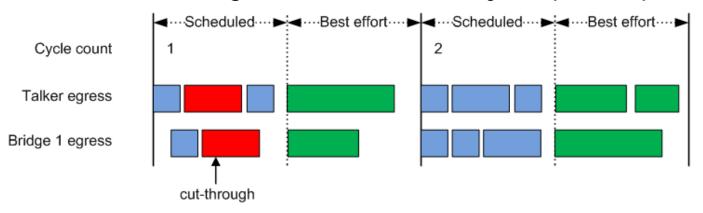
Assumptions


- All end-stations and bridges use same gating cycle
 - Cycle starts at same point in all
 - Cycle length has a default that can be changed
 - Use SRP to ensure that all agree
- Cycle has two windows: scheduled and best-effort
 - Scheduled window grows to fit all streams for that egress
 - Best-effort window shrinks
 - If new stream would cause best-effort window to be smaller than maximum frame, reservation fails

Reasons for Bridge-Aware Cycles

- Determinism (worst-case latency)
- Streams slower than frame-per-cycle

Determinism (1 of 2)


• If we enforce cycle-per-hop for each stream...

- ... worst-case latency is linear function of #hops
- If red received by bridge in schedule window 1 (odd), must hold back until schedule window 2 (even)
 - Requires cycle-aware bridges

Determinism (2 of 2)

• If we allow egress earlier than cycle-per-hop...

- ... simple formula for worst-case latency seems to remain: linear function of #hops
 - Worst that can happen in bridge: red pushed to cycle 2
- If software tool has detailed topology & stream info (e.g. IS-IS), it can calculate precise worst-case latency

Slower Streams (1 of 2)

- Many control applications use multiple rates
 - Often harmonic (e.g. 250µs, 2ms, 8ms)
- Example of "cycle multiplexing"
 - 125µs cycle, talker 1 sends every 250µs, talker 2 sends every 250µs, talker 1 & 2 alternate: odd & even cycle count
- Network-wide cycle multiplexing can be complex
 - Various multiples (e.g. 8 1ms talkers, 13 2ms talkers)
 - Talkers share cycle across complex topology
 - Likely to require bridge data plane to be stream-aware
 - Not just cycle-aware

Slower Streams (2 of 2)

- Alternative: Limit cycle multiplexing to end-station
 - Bridge not required to be cycle-aware
- End-station reserves bandwidth in every cycle
- Multiple talkers in end-station alternate use of cycles
 - Specifics of cycle multiplexing outside 802.1 scope
- 802.1 feature: multiple destination addresses can share a bandwidth reservation
 - Not supported in 802.1 SRPv1
 - Supported in IETF RSVP

Conclusion

- 802.1Qbv scheduling viable for SRP streams
 - Cycle-aware bridges may not be required
 - Recommend support for multiple talkers per reservation
- Peristaltic proposal is Implicit Scheduling
 - Talker specifies bandwidth
 - 802.1 entities calculate schedule details
- Can be leveraged to provide Explicit Scheduling
 - Use traffic engineering concepts
 - Talker specifies schedule details
 - E.g. Distinct gating cycle per bridge

Thank you

IEEE 802.1 TSN, January 2013, Vancouver