
802.1Qcc D1.0: Background for Resolution of Comments 67, 68, 69

Rodney Cummings National Instruments

IEEE 802.1, June 2016

Scheduled Talker/Listeners (1 of 7)

- Qcc 1.0, 99.2.2.5, Talker's TrafficSpecification (TSpec)
 - TSpec is in several standards (e.g. DiffServ, .1Qat, .1Qcc)
 - How does Talker transmit frames of its stream?
 - Technically speaking, this is Talker only
 - Does not mandate same behavior at each bridge
 - Fully-distributed (e.g. MSRPv0) mandates consistent shaping
 - CNC: Each bridge can use different shaping/scheduling

Scheduled Talker/Listeners (2 of 7)

- Qcc 1.0, 99.2.2.6, NetworkRequirements (NReqs)
 - Originally from slide 12 of
 - <u>http://www.ieee802.org/1/files/public/docs2014/cc-nfinn-control-flows-0414-v02.pdf</u>
 - User states <u>requirements</u> of the <u>network</u>
 - Most fundamental concept of TSN
 - TSN provides worst-case latency and loss
 - New QoS that Talkers and Listeners request from network
 - Goal: Facilitate use of TSN by existing applications
 - Concept is explicit in .1Qcc (and IETF DetNet)
 - AVB (.1Qat) had an implicit requirement (see comment #47)

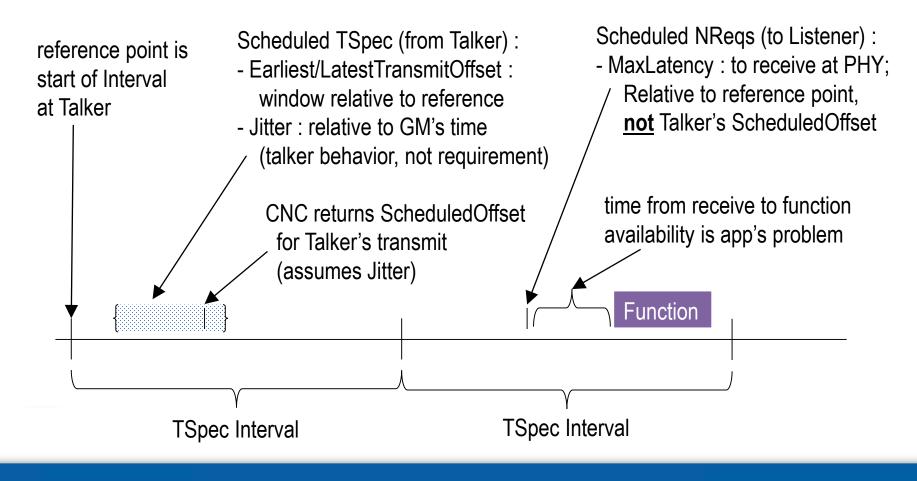
Scheduled Talker/Listeners (3 of 7)

- Is it possible for Talker to transmit synced to time (e.g. using 802.1AS)?
 - Yes (statement of fact in existing applications)
 - Therefore, TSpec needs a scheduled option
 - Async TSpec of MSRPv0 is the other option
- Is it possible for Listener to read stream synced to time?
 - Yes (statement of fact in existing applications)
 - Time of that read in turn determines the latency requirement
 - Therefore, NReqs needs a scheduled option

Scheduled Talker/Listeners (4 of 7)

- Is Talker's scheduled TSpec limited to .1Qbv?
 - No (statement of fact in existing applications)
 - Maybe we should use a different term than 'scheduling'?
- Example worse than .1Qbv
 - Talker has periodic RTOS timer driven by 802.1AS
 - Talker transmits streams in that timer's interrupt
 - Significant jitter: Timer, interrupt, best-effort interference, ...
- Example better than .1Qbv
 - Talker has per-stream scheduling hardware
 - Low jitter even with multiple streams of same traffic class

Scheduled Talker/Listeners (5 of 7)


- Application can schedule its own components
 - Functions (code), physical inputs, physical outputs, ...
 - Scheduling of app components is outside scope of 802.1
- Clear boundary between network and application
 - TSN frame transmit/receive at PHY (PTP timestamp point)
 - Network time sync (e.g. 802.1AS)
- All timing above boundary is application's problem
 - E.g. Time from function's 'Write' to transmit is outside 802.1

Scheduled Talker/Listeners (6 of 7)

- How do we specify a network point-of-reference for scheduled option of TSpec and NReqs?
 - Assume Talker and Listener use same interval
 - Start of interval is in phase with PTP epoch
 - Application 'loops' are synced in time; typical time-triggered app
 - Specify TSpec and NReqs using times relative to start of interval at Talker (as reference)

Scheduled Talker/Listeners (7 of 7)

• Timing diagram of Qcc's scheduled option

