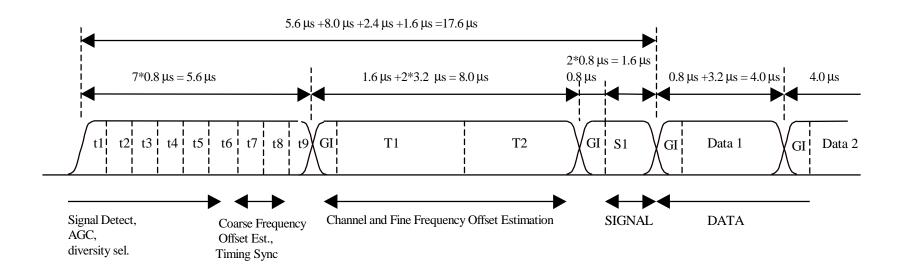

Wireless LANs		
An Improved Rate Signalling		

An Improved Rate Signalling


- The reliability of the rate-signaling scheme is crucial for the performance of the 802.11a Wireless LAN.
- We propose a new reliable scheme based on bi-orthogonal Hadamard coding and OFDM modulation.
- No overhead relative to current scheme
- Simple to implement.

Overview of current scheme

- 4 bits are conveyed by QPSK modulating the sequences S1 and S2.
- t10 serves as a guard interval.
- Overall length 0.8uS+0.8uS+0.8uS=2.4uS.
- •In AWGN: same error rate as rate ½ BPSK OFDM. (6Mb/s).
- •Non satisfactory performance under severe multipath conditions.

Proposed Scheme

- 4 bits are conveyed by the sequence S1 spanning 1.6uS.
- Additional guard interval of 0.8uS.
- Overall length 2.4uS same as before.

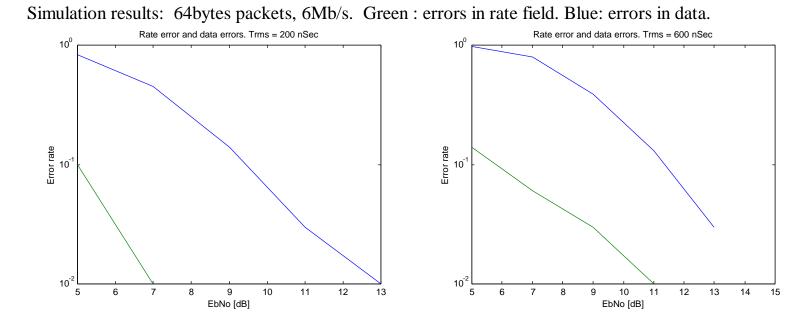
Coding and Modulation

- 3 LSB select one row of Hadamard 8 matrix.
- The MSB selects sign.
- The 8 binary symbols are repeated 3 times to form 24 vector.
- The vector is multiplied with a cover sequence.
- The result is used to modulate the <u>even</u> subcarriers of a 64 point OFDM symbol. The time domain vector has two identical halves.
- The time domain vector is cyclically extended and a window is applied to truncate it to length 2.4uS.

Decoding and Demodulation

- The 32 samples signal is cyclically extended to provide 64 samples.
- A 64-point FFT is used to demodulate.
- The even subcarriers are multiplied by the cover sequence.
- The subcarriers are combined to produce an 8-point vector.
- A Fast Hadamard Transform is applied.
- The location of peak determines 3 MSBs. The sign of the peak determines the MSB.

•Both modulation and demodulation require existing H/W: namely the 64 point FFT/IFFT


•Coding and decoding require an 8 point fast Hadamard transform.

Performance in flat AWGN

- Let E_s denote the power per spectral line. Then for rate $\frac{1}{2}$ k=7 BPSK we have $d_{\text{free}}^2 = 5*4E_s = 20E_s$.
- For bi-orthogonal coding we have $d_{\text{free}}^2 = 2*8*3*E_s = 48E_s$.

 \Rightarrow The bi-orthogonal scheme is better by 3.8dB than the coding scheme of the section.

Performance in severe multipath

Peak to Average Power Ratio

The cover sequence assures good PAP ratios for all codewords.

Codeword	PAP [dB]
1	3.2 dB
2	3.7 dB
3	4.6 dB
4	3.7 dB
5	3.2 dB
6	4.2 dB
7	4.6 dB
8	3.7 dB

$PAP = 3.2dB \dots 4.6dB.$

Extension to 5 bits

- Due to the proliferation of codes and data rates, (1/3, 9/16 etc.) there is a need to convey more then 4 bits.
- The proposed scheme can be easily extended to support 5 bits.
- Performed by QPSK modulating the H₈ row.
- Decoding by complex 8-point FHT.
- Same minimum free distance of $48 * E_s$. Double number of minimum distance neighbours => Slight degradation in performance.

Conclusions

- A reliable method for transmitting the 4 bits of the rate field.
- Requires no overhead relative to the current scheme.
- Much lower error rate than the data section even in the most reliable mode, both under flat channel and under severe multipath conditions.
- Simple to implement. Uses existing modulation and demodulation mechanisms.
- Requires Fast Hadamard Transform to be implemented.
- Simple extension to 5 bits.