Space-Time Codes and Signal Processing for Slow Fading Channels

IEEE 802.16 Presentation Submission Template (Rev. 8)

Document Number:
IEEE 802.16.3p-00/11

Date Submitted:
2000-07-07

Source:
Roger Hammons
Hughes Network Systems
11717 Exploration Lane
Germantown, MD 20876 USA

Voice: +1 301 428 2784
Fax: +1 301 428 2750
mailto: rhammons@hns.com

Venue: IEEE 802.16.3 Session #8

Base Document: The presentation provides an overview of recent advances in space-time codes and signal processing. Since space-time techniques have potentially large benefits for MMDS systems, it is recommended that 802.16.3 investigate their applications in the new standard under development.

Purpose: Discussion

Notice: This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedure (Version 1.0) <http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <maltocr.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 website <http://ieee802.org/16/ipr/patents/letters>.

802.16.3 July 2000
Space-Time Codes and Signal Processing for Slow Fading Channels

A. Roger Hammons Jr. and Hesham El Gamal

Hughes Network Systems
Germantown, Maryland USA
Space-Time Modems Exploit “Hidden” Capacity of the Multipath Channel

- **Space-time codes**: $L_t > L_r$. Seek diversity through code design.
- **BLAST**: $L_r = L_t$. Seek high throughput through signal processing.
- **Hybrid schemes**: Also possible.
Space-Time Technology: Code Design and Signal Processing

AT&T Research has popularized “Space-Time Channel Codes”
(Tarokh, Seshadri, Calderbank)
• **Primary objective**: Increased diversity
• **Method**: Channel coding performed across antennas as well as time

Lucent has popularized “Layered Space-Time Architecture” or “BLAST” (Foschini, Gans)
• **Primary objective**: Increased throughput
• **Method**: Independent spatial channels via interference avoidance and cancellation

We investigated synergistic approaches that advance the state of the art in both space-time codes and space-time modems.
Design Criteria for Space-Time Codes

Pairwise error probability for Rayleigh fading channel:

\[P(c \rightarrow e) \leq \left(\frac{\eta E_s}{4N_0} \right)^{-r} \]

where \(r = \text{rank}(f(c) - f(e)) \) ← rank of baseband difference

\[\eta = (\lambda_1 \lambda_2 \cdots \lambda_r)^{1/r} \] ← geometric mean of eigenvalues

Design Criteria [Fitz (Ohio State Univ.), Tarokh (AT&T)]

- Rank Criterion: Maximize diversity advantage \(r \) over all distinct code word pairs \(c \) and \(e \).
- Product Distance Criterion: Maximize coding advantage \(\eta \) over all distinct code word pairs \(c \) and \(e \).
Space-Time Modulation Format Gives 3GPP “Open Loop” Transmit Diversity

Simplified Block Diagrams of 3GPP Transmitter with “Space-Time Transmit Diversity” (STTD)

Channel Encoder → Rate Matching → Channel Interleaver → QPSK Space-Time Formatter → Diversity Antenna Pilot → MUX → Tx. Ant #1, Tx. Ant #2

QPSK Space-Time Formatter

\[
\begin{array}{c|c}
S_1 & S_2 \\
S_2^* & S_1^* \\
\end{array}
\]

Ant #1, Ant #2

Alamouti space-time “block code”

No Diversity Data Pattern

N_pilot | N_data | N_pilot | N_data

Slot 1

802.16.3 July 2000
Handcrafted Trellis Codes Achieving Full Spatial Diversity are Known

Tarokh-Seshadri-Calderbank (TSC) 4-State Trellis Code for QPSK Modulation

Achieves maximum 2-level spatial diversity.

Binary Formulation

\[x_t^{(1)} = 2b_{t-1} + a_{t-1} \]
\[x_t^{(2)} = 2b_t + a_t \]

\[Z_4 \text{ Formulation} \]
Handcrafted Trellis Codes Achieving Full Spatial Diversity are Known

Tarokh-Seshadri-Calderbank (TSC) 8-State Trellis Code for QPSK Modulation

Binary Formulation

\[x_t^{(1)} = 2a_{t-2} + 2b_{t-1} + a_{t-1} \]
\[x_t^{(2)} = 2a_{t-2} + 2b_t + a_t \]

\[Z_4 \text{ Formulation} \]

Achieves maximum 2-level spatial diversity.
Binary Criteria Identify Full-Diversity Space-Time Codes

• **BPSK Binary Rank Criterion**: Let C be a linear $L \times n$ space-time code with $n \geq L$. Suppose that every non-zero binary code word $c \in C$ is a matrix of full rank over the binary field F. Then, for BPSK transmission, the space-time code C satisfies the space-time rank criterion and achieves full spatial diversity L.

• **QPSK Binary Rank Criterion**: Let C be a linear $L \times n$ space-time code over \mathbb{Z}_4 with $n \geq L$. Suppose that, for every non-zero binary code word $c \in C$, the row-based indicant $\Xi(c)$ or the column-based indicant $\Psi(c)$ has full rank L over F. Then, for QPSK transmission, the space-time code C satisfies the space-time rank criterion and achieves full spatial diversity L.

• **Extensions to Higher-Order Modulation**: Use multi-level construction and apply binary rank criteria to the design of the constituent codes at each level.
“Stacking” Constructions Yield New Full-Diversity Space-Time Codes

Stacking Construction

\[
\begin{bmatrix}
T_1(\bar{x}) \\
T_2(\bar{x}) \\
M \\
T_L(\bar{x})
\end{bmatrix}
= \begin{bmatrix}
\triangle\triangle\triangle\triangle\triangle\triangle \\
\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit \\
M M M M O M \\
\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit
\end{bmatrix} \in C
\]

\(C \) satisfies BPSK binary rank criterion iff \(T = a_1T_1 + a_2T_2 + \Lambda + a_LT_L \) is non-singular unless \(a_1 = a_2 = \Lambda = a_L = 0 \).

Multi-Stacking Construction

\[
\begin{bmatrix}
\triangle\triangle\triangle\triangle\triangle\triangle \\
\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit \\
M M M M O M \\
\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit
\end{bmatrix} \in C
\]

Concatenations of space-time codes satisfying binary rank criterion form full-diversity space-time codes \(C \).

Transformation Theorem

Full-Diversity Space-Time Code

\[
\begin{bmatrix}
\bar{c}_1 \\
\bar{c}_2 \\
M \\
\bar{c}_L
\end{bmatrix} = \begin{bmatrix}
\triangle\triangle\triangle\triangle\triangle\triangle \\
\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit \\
M M M M O M \\
\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit\diamondsuit
\end{bmatrix} \in C
\]

Linear transformation of full-rank

\[
\begin{bmatrix}
T(\bar{c}_1) \\
T(\bar{c}_2) \\
M \\
T(\bar{c}_L)
\end{bmatrix} = \begin{bmatrix}
\text{full-rank} \\
\text{full-rank} \\
\text{full-rank} \\
\text{full-rank}
\end{bmatrix} \in T(C)
\]

Full-Diversity Space-Time Code
Convolutional Codes with Optimal d_{free} Yield Full-Diversity Space-Time Codes

"Natural" space-time code associated with rate $1/L$ convolutional code:

Multiplex L output coded bits in space (among antennas) rather than time.

Practical examples of our general space-time "Stacking Constructions."

<table>
<thead>
<tr>
<th>L</th>
<th>v</th>
<th>Connection Polynomials</th>
<th>d_{free}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>5, 7</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>64, 74</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>46, 72</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>65, 57</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>554, 744</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>712, 476</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>561, 753</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>54, 64, 74</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>52, 66, 76</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>47, 53, 75</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>554, 624, 764</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>452, 662, 756</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>557, 663, 711</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>52, 56, 66, 76</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>53, 67, 71, 75</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>472, 572, 626, 736</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>463, 535, 733, 745</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>75, 71, 73, 65, 57</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>536, 466, 646, 562, 736</td>
<td>28</td>
</tr>
</tbody>
</table>
Performance of BPSK Space-Time Codes with 4 Transmit Antennas

- Optimal d_{free} code is 3 dB better than the delay diversity scheme.
- Optimal d_{free} code is 1 dB better than Fitz-Grimm zeroes symmetry code.

802.16.3 July 2000
Performance of BPSK Space-Time Codes with 5 Transmit Antennas

- Optimal d_{free} code is 3 dB better than the delay diversity scheme.
- Optimal d_{free} code is 2 dB better than Fitz-Grimm zeroes symmetry code.
Performance of QPSK Space-Time Codes in Quasi-Static Fading Channels

![Graph showing the performance of QPSK Space-Time Codes in Quasi-Static Fading Channels. The graph plots FER against SNR (dB) with two codes compared: New Code (16 state) and Tarokh's Code (16 state).]
Performance of 8-PSK Space-Time Codes in Quasi-Static Fading Channels

![Graph showing the performance of 8-PSK codes with 2 transmit and 2 receive antennas. The graph plots FER (Frame Error Rate) against SNR (Signal-to-Noise Ratio) in dB. The graph compares a new code (8-state) and Tarokh's code (8-state).]
Stacking Construction Yields New Codes for Space-Time Appliques

1. Decoded Bit Error Rate
 - L=2, Alamouti, QPSK Orthogonal Design
 - L=3, Tarokh, 16-QAM Orthogonal Design
 - L=3, Hammons-EI Gamal, QPSK 3x3 Stacking Construction

2. SNR dB

3. 2 bps/Hz
Foschini showed that outage capacity increases linearly when L_r equals L_t.

Bit Rate = Bandwidth · Number of antennas · Bit rate/antenna · Coding rate

$30 \text{ Mbps} = 3 \cdot 5 \cdot 4 \cdot 1/2$
Layered Space-Time Architectures

Definition: A layer is an assignment of space-time transmission resources to a component channel encoder in which at most one antenna is available each transmitted symbol interval.

Properties:
- No spatial interference within a layer.
- Decoding is performed layer by layer.
- Conventional channel codes can be used.
Lucent’s BLAST Technology

Two steps to decode a given layer:

1. Subtract interference from previously decoded layers

2. Project away from interference from undecoded layers

Potential Limitations of BLAST Signal Processing

- Requires equal number of transmit and receive antennas
- Spatial diversity varies within a code word
- Errors can propagate both spatially and temporally
- Limited ability to interleave for temporal diversity
- Loss in throughput due to diagonal layering

One code word per diagonal layer
Hughes Offers Threaded Space-Time Architecture

Characteristics of Threaded Space-Time Architecture

- Generalized layering exploits spatial and temporal diversity
- Threaded space-time channel codes ensure full-diversity
- Receiver uses new, efficient, multi-user detection techniques
 - Soft-decision feedback reduces spatial error propagation.
 - Iterative MMSE processing results in a symmetrical performance.
• Iterative multi-user detection (MUD) is one key to threaded space-time architecture.
• Threaded channel codes, based on space-time principles, are optimized for MUD.
Threaded Space-Time Code Design
for Quasi-static Fading Channels

Theorem (Threaded Stacking Construction):
Let L be a layer of spatial span n. Given binary matrices M_1, M_2, \ldots, M_n of dimension $k \times \lambda$, let C be the binary code of dimension k consisting of all code words $g(x) = \bar{x}M_1 | \bar{x}M_2 | \Lambda | \bar{x}M_n$, where \bar{x} denotes an arbitrary k-tuple of information bits. Let f_L denote the spatial modulator having the property that the modulated symbols $\mu(\bar{x}M_j)$ are transmitted in the symbol intervals of L that are assigned to antenna j.

Then, as the space-time code in a communication system with n transmit antennas and m receive antennas, the space-time code C consisting of C and f_L achieves spatial diversity dm in a quasi-static fading channel if and only if d is the largest integer such that M_1, M_2, \ldots, M_n have the property that

$$\forall a_1, a_2, \Lambda, a_n \in F, \quad a_1 + a_2 + \Lambda + a_n = n - d + 1:$$

$$M = [a_1M_1, a_2M_2, \Lambda, a_nM_n]$$

is of rank k over F.

802.16.3 July 2000
Threaded-STC Yields Bigger Bang than the BLAST Technology

At 1% FER, advantage is more than 3 dB.
Threaded Space-Time Outperforms AT&T’s Group Suppression Approach

At 1% FER, advantage is more than 4 dB.
Conclusions

• MMDS must contend with slow fading channels
• Space-time technology offers potentially large gains in this environment
• 802.16.3 should be aggressive in study and adoption of best space-time solutions
References

Journal Papers

• El Gamal and Hammons, “A new approach to layered space-time signal processing and code design,” accepted for publication (pending revision) in *IEEE Transactions on Information Theory*.

Conference Papers

