OFDMA PHY proposal for the 802.16.3 PHY layer

IEEE 802.16 Presentation Submission Template (Rev. 8)

Document Number:
IEEE 802.16.3p-01/25

Date Submitted:
2001-01-24

Source:
Itzik Kitroser
RunCom Technologies LTD.
Rishon Lezion, Moshe Levi 14 st.
Israel

Voice: 972-3-9528440
Fax: 972-3-9528805
E-mail: itzikk@runcom.co.il

Venue:
Ottawa, Canada

Base Document:
IEEE 802.16.3c-01/25

Purpose:
To introduce MAC enhancements to the TG1 MAC for the TG3/TG4 groups.

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) <http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
MAC Enhancements
proposal for TG3

Zion Hadad
Itzik Kitroser
Yossi Segal

Runcom Technologies LTD
Contents

¥ Introduction
¥ Overview of OFDMA
 —Sub-Channels Concept
¥ Proposed Enhancements to the TG1 MAC
 —Enhanced Synchronization Mechanism
 —Enhanced Bandwidth Requests
 —Two Dimensional Allocation
¥ Conclusions
Introduction

- Proposed Enhancements based on OFDMA PHY proposals (for TG3 & TG4)
- Already integrated into the DVB-RCT standard (to be approved this April)
- Based on an existence of Sub-Channels and enhancing existing mechanisms
- Supports all MAC working modes (FDD-C, FDD-B, TDD)
OFDMA symbol structure

The usable carriers are divided into groups called Sub-Channels.
Using Special Permutations for Carrier Allocation

All usable carriers are divided into 53 (or 48) carrier groups named basic group, each main group contains several carriers (depending on the mode used):

- 32 carriers for the 2k mode
- 16 carriers for the 1k mode
- 4 carriers for the 256 mode
OFDMA/TDMA - Principles

Using OFDMA/TDMA, Sub Channels are allocated in the Frequency Domain, and OFDM Symbols allocated in the Time Domain.

Time Frame = n OFDMA Symbols
Access method for the 256, 64 modes

All Sub-Channels within a symbol are allocated for data or Ranging only
Access method for the 2k, 1k modes

DS symbols are allocated for data only, US Sub-Channels within a symbol are allocated for data and Ranging.
Proposed Ranging Enhancement
Proposed Ranging Enhancement

Terminology:

رضى Ranging Sub-Channels:
—Dedicated Ranging carriers

رضى Ranging Symbols:
—Ranging - Dedicated OFDM Symbols in 64, 256 modes.
—Normal OFDM Symbols in 1K, 2K modes
Proposed Ranging Enhancement

Terminology (cont.)

¥ Ranging Slot
 — Combination of Ranging Sub-Channel and Ranging Symbol

¥ Ranging Code:
 — CDMA code sent on the ranging slots
Ranging Sub-Channels

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol Duration</td>
<td></td>
</tr>
</tbody>
</table>

- **Ranging Sub-Channels**
- **Data Sub-Channels**
Ranging Symbols

Time

Symbol Duration

Frequency

Ranging Sub-Channels

Data Sub-Channels
Proposed Ranging Enhancement

¥ User Selects Randomly Ranging Slot
¥ User Selects Randomly Ranging Code
¥ User Sends the Ranging Code to the BS with a pre-defined and robust modulation
¥ User waits for RNG-RSP message with indication about the sent Ranging Code and Ranging Slot
Proposed Ranging Enhancement

¥ Advantages:

— Robust Synchronization Technique

— Several SS can be Synchronized Simultaneously

— In the 1K, 2K modes, the ranging is done in parallel to data transmission with small overhead
Proposed Ranging Enhancement

Ÿ Advantages (cont)

—The SS is the initiator of the initial Ranging process

—The CDMA technique can be used for other purposes.
Enhanced Bandwidth Reservation
Enhanced Bandwidth Reservation

Current Bandwidth reservation techniques:
¥ Unsolicited Grants (UGS, UGS-AD)
¥ Various Polling technique (rtPS, nrtPS, PM bit)
¥ Piggyback
¥ Best Effort Bandwidth request (Contention)
Enhanced Bandwidth Reservation

¥ IP centric environment
 —Bursty and unexpected traffic
 —No predictable polling strategy
 —Small bursty packets (TCP ACKs)
 —Dense cells

¥ Need for a fast and safe bandwidth reservation tool with minimal overhead and good statistical multiplexing
Enhanced Bandwidth Reservation

 ¥ Three domains of CDMA codes:
 —Initial Ranging
 —Maintenance Ranging
 —BW Requests

 ¥ Using the CDMA codes on the Ranging Slots to send bandwidth requests !!
Enhanced Bandwidth Reservation

Advantages

¥ No need for best effort access region allocated
¥ Reduce the collision risk due to the CDMA technique
¥ Several requests can be sent simultaneously
¥ No specific allocation to a subset of users
Enhanced Bandwidth Reservation

How does it work?

- SS randomly selects Ranging Slot and Request Code (uses request backoff window)
- BS receiving Request Code, allocates a predefined BW
- SS identify its allocation by the Ranging Slot and Request Code.
Enhanced Bandwidth Reservation

♀ Proposed Upstream MAP IE for Request Code:

<table>
<thead>
<tr>
<th>Bit 0</th>
<th>15</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection ID (16 bits)</td>
<td>UIUC (4 bits)</td>
<td>Slot Offset (12 bits)</td>
</tr>
<tr>
<td>Ranging Code (8 bits)</td>
<td>Ranging Slot (TBD)</td>
<td></td>
</tr>
</tbody>
</table>
Two Dimensional Allocation
Two Dimensional Allocation

♫ A OFDMA based PHY introducing the notion of a Sub-Channel or Sub-Carriers allocation.

♫ The upstream (and downstream) allocation expands into a combination of frequency and time.
Two Dimensional Allocation

¥ Slot = (\{N,m\} | N = Time Symbol,
 m = Sub-Channel)

¥ Time tick duration = OFDM symbol duration

¥ Addition of Sub-Channel reference to the time reference
Two Dimensional Allocation

MAC Mapping can stay in the same complexity level as for ordinary TDMA schemes
Two Dimensional Allocation

- The allocation can be optimized to facilitates the two dimensional grid
- Each user will get allocation according to the relevant QoS requirements
- Allocation of a sub-grid in the two dimensional resource
Two Dimensional Allocation

Example of slot pattern with 17 allocated slots
Two Dimensional Allocation

Possible Map IE structure to support two dimensional allocation:

<table>
<thead>
<tr>
<th>Bit 0</th>
<th>15</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection ID (16 bits)</td>
<td>UIUC (4 bits)</td>
<td>Slot Offset (12 bits)</td>
</tr>
<tr>
<td>Sub Channel Offset (8 bits)</td>
<td>Number of Sub Channels (8 bits)</td>
<td>Number of Slots (16 bits)</td>
</tr>
</tbody>
</table>
Two Dimensional Allocation

MAC Mapping maps the downstream Sub-Channels to their specific Usage/Users.

Time

Frequency

OFDMA symbol time
Summary

- Guidelines for possible enhancements based on OFDMA PHY
- Efficient utilization of the transmission resource
- Natural expansion of the TG1 MAC for OFDMA PHY
- Based on an OFDMA-based standard (DVB-RCT)