<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>FEC performance for 802.16.3 OFDM</td>
</tr>
<tr>
<td>Date</td>
<td>2001-5-07</td>
</tr>
</tbody>
</table>
| Source(s) | Tal Kaitz
BreezeCOM Ltd.
Atidim Technology Park Bldg. 1
P.O.B 13139 Tel Aviv 61131 Israel |
| Notice | This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. |
| Release | The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16. |

Abstract The performance of the proposed Forward Error Correction (FEC) Scheme for 802.16.3 OFDM PHY is investigated. The proposed scheme employs a concatenated Reed-Solomon and a convolutional code, with relatively short blocks. It is shown that due to the short block lengths employed, the proposed scheme is inefficient, and that there are more efficient and simpler schemes. In particular, it is shown that the rate equivalent convolution code performs as well as the proposed concatenated scheme.

Purpose Aid in the selection of the FEC scheme.
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) <http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
FEC Performance of the proposed 802.16.3 OFDM PHY

Tal Kaitz, BreezeCOM

1. Introduction

In the proposed 2-11GHz air interface draft [1], a Forward Error Correction (FEC) scheme is defined. This scheme utilizes concatenated Reed Solomon block codes and a tail-biting convolution code. The block lengths of the resulting code are matched to the OFDM symbol size. As a result, the block lengths are dependent on the modulation alphabet, in the range of 24…108 bytes.

In a recent submission ([2]) to the OFDM ad-hoc group, C. Cahn and A.W Wang demonstrated that for the ideal BPSK/QPSK channel, the proposed schemes are be inefficient due to the short block lengths.

In this submission, more simulation results are shown for the bit interleaved coded modulation (BICM) channel. The performance of the proposed concatenated schemes, are compared with an equivalent rate, convolutional code (CC). The results indicate, that the CC is equal or better to its equivalent concatenated code.

2. Coding schemes

In this submission two coding schemes are considered:

1. The proposed concatenated RS code and a convolutional code (CC). The CC used is the standard rate=1/2 K=7 with generator polynomials 171₈ and 133₈. The CC is punctured to a desired rate. The parameters of block length puncturing and RS code are given in Table 1.

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Over all code rate</th>
<th>Block lengths (Bytes)</th>
<th>RS parameters (N,K,T)</th>
<th>CC Code rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>24</td>
<td>(32,24,4)</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>QPSK</td>
<td>36</td>
<td>(40,36,2)</td>
<td>5/6</td>
<td></td>
</tr>
<tr>
<td>QAM16</td>
<td>48</td>
<td>(64,48,8)</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>QAM16</td>
<td>72</td>
<td>(80,72,4)</td>
<td>5/6</td>
<td></td>
</tr>
<tr>
<td>QAM64</td>
<td>96</td>
<td>(108,96,6)</td>
<td>5/6</td>
<td></td>
</tr>
<tr>
<td>QAM64</td>
<td>108</td>
<td>(120,108,6)</td>
<td>5/6</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Concatenated Coding schemes

2. Zero tail convolutional code with rate=1/2 K=7. The code is continuous over the entire message and is terminated at the end of the message by inserting 6 zero bits.

3. Simulation results

The simulation results for AWGN channels at QAM16 rates _ and QAM64 rates 2/3 and _ are shown in the following figures.

In all cases the packet length simulated was about 1000 bytes. Ideal channel estimation was assumed.
1000 bytes packet
1000 bytes packet

CC 2/3
CC 3/4 + RS (108 96 6)

1000 bytes packet

CC 3/4
CC 2/3 + RS (120 108 6)
4. Conclusions

For the cases shown, the CC either outperformed or was equal to the concatenated code. This is due to the short block length employed. As a consequence we can either:

1. Use the CC code without concatenation
2. Increase the block length of the RS code to the full (255,239) to gain SNR improvement.

It should be noted that further study is needed for the multipath case.

5. References
