Channel Estimation, Diversity and Preamble Requirements for Broadband Wireless Using OFDM

IEEE 802.16 Presentation Submission Template (Rev. 8.2)

Document Number:

Date Submitted: 2001-08-31

Venue:

IEEE 802.16 meeting 15, Denver, CO

Base Document:

Purpose: For posting on 802.16 web site

Notice:

This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:

The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) <http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto: r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notice>.,
Channel Estimation, Diversity and Preamble Requirements for Broadband Wireless Using OFDM

Lek Ariyavisitakul
Broadband Wireless Solutions, Inc.

September 11, 2001
Outline

- Optimum Channel Estimation
- Time Synchronization
 - Preamble correlation vs. cyclic prefix correlation
- Cyclic prefix issue
- Alamouti and related MIMO techniques
Optimum Channel Estimation

Frequency Domain

Minimizing MSE = \(\left\langle \left| R_\ell - \hat{H}_\ell X_\ell \right|^2 \right\rangle \)

\(\langle \cdot \rangle : \) average over training blocks

\[
\hat{H}_\ell = \frac{\left\langle R_\ell X_\ell^* \right\rangle}{\left\langle \left| X_\ell \right|^2 \right\rangle} = \frac{\left\langle R_\ell \right\rangle}{\left\langle X_\ell \right\rangle}
\]

\(\left| X_\ell \right|^2 : \) constant
Optimum Channel Estimation

Mixed Domain (Li, Seshadri, Ariyavisitakul, IEEE JSAC, Mar. 1999)

Minimizing MSE:

\[
\left\langle \sum_{n=0}^{M-1} \left| r_n - \sum_k \hat{h}_k x_{n-k} \right|^2 \right\rangle = \left\langle \frac{1}{M} \sum_{\ell=0}^{M-1} \left|R_\ell - \left(\sum_{n=0}^K \hat{h}_n e^{-\frac{j2\pi n\ell}{M}} \right) X_\ell \right|^2 \right\rangle
\]

\(\langle \cdot \rangle\): average over training blocks

\[
\hat{H}_\ell = \text{FFT}(\hat{h}_k)
\]

\[
\begin{pmatrix}
\hat{h}_0 \\
\vdots \\
\hat{h}_K
\end{pmatrix} = \left\langle |X_\ell|^2 \right\rangle R^{-1} \begin{pmatrix}
\tilde{h}_0 \\
\vdots \\
\tilde{h}_K
\end{pmatrix}
\]

\(\tilde{h}_k : \text{IFFT}(\langle R_\ell / X_\ell \rangle)\)

\[
R = \begin{pmatrix}
\rho_0 & \rho_{-1} & \cdots & \rho_{-K} \\
\rho_1 & \rho_0 & \cdots & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
\rho_K & \cdots & \cdots & \rho_0
\end{pmatrix}
\]

\[
\rho_n = \left\langle \sum_{m=0}^{M-1} x_m x^*_{m-n} \right\rangle = \left\langle \frac{1}{M} |X_\ell|^2 \sum_{\ell=a}^{M-1-a} e^{-\frac{j2\pi n\ell}{M}} \right\rangle
\]

\(a : \text{number of guard tones}\)

assuming \(|X_\ell|^2 : \text{constant}\)
Optimum Channel Estimation

Mixed Domain (continued)

if $a = 0$, then $R = I \langle |X_{\ell}|^2 \rangle \iff \begin{bmatrix} \hat{h}_0 \\ \vdots \\ \hat{h}_k \end{bmatrix} = \text{IFFT}(\langle R_{\ell} / X_{\ell} \rangle)$

if $a \neq 0$, R^{-1} needs to be pre-computed for optimum performance

Frequency-Domain Interpolation and Averaging

\iff **Time-Domain Truncation and Decimation**
Desirable Preamble for Channel Estimation

- Has a flat spectrum and low PAR
- Includes multiple sub-blocks, each with length no more than $K = \text{maximum channel dispersion}$
Simulation Assumptions

- Monte-Carlo simulation with 20,000 channel samples
- **256-FFT** (only middle 200 tones used), **3.5 MHz OFDM** (cf. 802.16.23)
 - Sampling frequency = 4.0832 MHz
- Channel models: **SUI4** and **SUI6** with omni antennas (latest versions)
 - Block fading is assumed
- Modulation: **16QAM**
- Coding: **BICM** using rate 1/2 conv. codes with k=7 and Gray mapping
 - Each FFT block contains 192 QAM symbols
- Interleaver: as specified in the standard draft—PRBS bit interleaving within each block of 96 QAM symbols, followed by symbol interleaving using a row-column interleaver, each row consisting of 96 QAM symbols
- **Cyclic prefix** length: 64 (128) samples (maximum specified for 256 FFT)
- Preamble consists of multiple repeated training sequences generated by 256-FFT with nulled tones
 - Nonzero tones have constant amplitude and pseudo-random phases
- Time synchronization based on preamble correlation
- Performance measure: ABER
 - 10^{-3} ABER $\approx 1\%$ ABLE
 - 10^{-4} ABER $\approx 0.1\%$ ABLE
 - (1 block in ABLE = 192 QAM symbols)
Performance with Different Numbers of Training Seq.

OFDM, 16QAM with rate 1/2 bit-interleaved conv. code
SUI4 (omni), 3.5 MHz, FFT size = 256, 1 Tx-1 Rx ant.
Increasing training sequence length gives same performance as interpolation.
Outline

• Optimum Channel Estimation
• Time Synchronization
 – Preamble correlation vs. cyclic prefix correlation
• Cyclic prefix issue
• Alamouti and related MIMO techniques
OFDM is insensitive to small timing offset/jitter, however...
Timing Based on Cyclic Prefix Correlation

Timing based on CP correlation

CP

OFDM symbol

FFT window

delayed replica due to multipath

CP

OFDM symbol

interference from next symbol
Performance of Cyclic Prefix Correlation over SUI4

OFDM, 16QAM with rate 1/2 bit-interleaved conv. code
SUI4 (omni), 3.5 MHz, FFT size = 256, training 2 x 64

Average BER vs. Average SNR
Performance of Cyclic Prefix Correlation over SUI5&6

Maximum delay spread $K = 41$ for SUI5, and $K = 82$ for SUI6

OFDM, 16QAM with rate 1/2 bit-interleaved conv. code
SUI5 and 6 (omni), 3.5 MHz, FFT size = 256, 2 x 256 training

cyclic prefix = 128 samples

Cyclic prefix correlation is inadequate for highly dispersive channels
Outline

• Optimum Channel Estimation
• Time Synchronization
 – Preamble correlation vs. cyclic prefix correlation
• Cyclic prefix issue
• Alamouti and related MIMO techniques
Effect of Insufficient Cyclic Prefix Length

“Channel SNR-based” means perfect channel knowledge and no FFT boundary effects taken into account

OFDM, 16QAM with rate 1/2 bit-interleaved conv. code
SUI6 (omni), 3.5 MHz, FFT size = 256, cyclic prefix = 64

Average SNR

Average BER

channelSNR

perf. ch. est.

training 2 x 64
Effect of Insufficient Cyclic Prefix Length

OFDM, 16QAM with rate 1/2 bit-interleaved conv. code
SUI6 (omni), 3.5 MHz, FFT size = 256, cyclic prefix = 128

Average BER vs. Average SNR

Cyclic prefix length MUST BE greater than maximum delay spread
Current Specifications of Maximum Cyclic Prefix Length

256-FFT

<table>
<thead>
<tr>
<th>Band</th>
<th>Maximum Cyclic Prefix Length (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETSI 1.75 MHz</td>
<td>31.35 µs</td>
</tr>
<tr>
<td>ETSI 3.5 MHz</td>
<td>15.67 µs</td>
</tr>
<tr>
<td>ETSI 7 MHz</td>
<td>7.84 µs</td>
</tr>
<tr>
<td>ETSI 14 MHz</td>
<td>3.92 µs</td>
</tr>
<tr>
<td>ETSI 20 MHz</td>
<td>1.96 µs</td>
</tr>
<tr>
<td>PCS 2.5 MHz</td>
<td>21.94 µs</td>
</tr>
<tr>
<td>PCS 5 MHz</td>
<td>10.97 µs</td>
</tr>
<tr>
<td>PCS 10 MHz</td>
<td>5.49 µs</td>
</tr>
<tr>
<td>PCS 15 MHz</td>
<td>3.66 µs</td>
</tr>
<tr>
<td>ETSI 15 MHz</td>
<td>5.61 µs</td>
</tr>
<tr>
<td>UNII 15 MHz</td>
<td>5.61 µs</td>
</tr>
<tr>
<td>UNII 10 MHz</td>
<td>5.61 µs</td>
</tr>
<tr>
<td>UNII 20 MHz</td>
<td>2.81 µs</td>
</tr>
</tbody>
</table>

Highlighted: < 20 µs

Need to *either* correct the specs *or* classify operating environment (e.g., antenna heights) and corresponding channel model subset for each system.
Outline

• Optimum Channel Estimation

• Time Synchronization
 – Preamble correlation vs. cyclic prefix correlation

• Cyclic prefix issue

• Alamouti and related MIMO techniques
Alamouti + BICM is an “overall” good transmit diversity and MIMO technique for

- 2 and 4 (combined with delay diversity) Tx antennas
- 1 and 2 Rx antennas
- Up to 4 bps/Hz throughput rate
Comparison of Different Tx Diversity Techniques

OFDM, 16QAM with rate 1/2 bit-interleaved conv. code
flat fading, 2 Tx-1 Rx ant.

5 MHz, 512-FFT, channel SNR-based for this and the next 5 slides
Comparison of Different Tx Diversity Techniques

OFDM, 16QAM with rate 1/2 bit-interleaved conv. code
SUI2 (omni), 2 Tx-1 Rx ant.
Comparison of Different Tx Diversity Techniques

OFDM, 16QAM with rate 3/4 bit-interleaved conv. code
SUI2 (omni), 2 Tx-1 Rx ant.

Alamouti is relatively insensitive to code rate and channel conditions
Comparison of Different Tx Diversity Techniques

OFDM, 16QAM with rate 1/2 bit-interleaved conv. code
SUI2 (omni), 4 Tx-1 Rx ant.

St block code
Delay diversity
Switched
Alamouti + delay
1 Tx ant.
Alamouti + BICM vs. Capacity

“Outage capacity” is the probability that the channel does not support 2 bps/Hz
Alamouti + BICM vs. Capacity vs. ST Conv. Code

MIMO performance comparison
flat fading, 2 Tx-2 Rx ant., 2 bps/Hz, 800 bits/block

Block Error Rate vs. Average SNR

- Alamouti + rate 1/2 coded 16QAM
- 16-state ST conv. coded QPSK
- capacity
Proposed Preamble Structure

• Basic structure

\[
\begin{array}{c|c}
CP & \text{Training Seq.} \\
\hline
CP & \text{Training Seq.} & \text{Training Seq.}
\end{array}
\]

1×128

2×128

• 2 Tx antennas

\[
\begin{array}{c|c}
CP & \{x\} \\
\hline
CP & \{x\}
\end{array}
\]

\[
\begin{array}{c|c}
CP & \{x\} \\
\hline
CP & -\{x\}
\end{array}
\]

1×128

also extendable to > 2 Tx antennas
Proposed Preamble Structure (Cont.)

• Received signal during each preamble block

\[R_{a,\ell} = H_{1,\ell} X_\ell + H_{2,\ell} X_\ell + N_{a,\ell} \]

\[R_{b,\ell} = H_{1,\ell} X_\ell - H_{2,\ell} X_\ell + N_{b,\ell} \]

\[\hat{H}_{1,\ell} = \frac{1}{2} \left(\langle \frac{R_{a,\ell}}{X_\ell} \rangle + \langle \frac{R_{b,\ell}}{X_\ell} \rangle \right) \]

\[\hat{H}_{2,\ell} = \frac{1}{2} \left(\langle \frac{R_{a,\ell}}{X_\ell} \rangle - \langle \frac{R_{b,\ell}}{X_\ell} \rangle \right) \]

• Advantages compared to disjoint preamble
 – Lower power amplifier rating requirement by 3 dB
 – Does not require accurate \(\frac{1}{\sqrt{2}} \) scaling
Training Performance for SUI4

OFDM, 16QAM with rate 1/2 bit-interleaved conv. code
SUI4 (omni), 3.5 MHz, FFT size = 256, 1 Rx ant.

with frequency averaging

Average BER

Average SNR
Training Performance for SUI6

OFDM, 16QAM with rate 1/2 bit-interleaved conv. code
SUI6 (omni), 3.5 MHz, FFT size = 256, 1 Rx ant.
with frequency averaging

![Graph](image-url)
Summary

- Short training sequences not only reduce overhead and processing delay, but also give good performance through frequency-domain interpolation and averaging
- Cyclic prefix correlation is inadequate for highly dispersive channels
- Cyclic prefix length MUST BE greater than maximum delay spread
- Alamouti + BICM is a viable transmit diversity and MIMO technique for small numbers of Tx and Rx antennas
- Proposed preamble structure performs to within
 - 1.5 dB for 1x128
 - 0.5 dB for 2x128
 compared to ideal performance with perfect channel knowledge