Reflections on FEC Ad-Hoc group resolutions

IEEE 802.16 Presentation Submission Template (Rev. 8)

Document Number:
IEEE 802.16.abc-01/37

Date Submitted:
2001-09-12

Source:
Tal Kaitz
BreezeCOM
21a Habarzel St.
P.O. Box 13139, Tel-Aviv 61131, Israel
Voice: +972-3645273
Fax: +972-36456222
E-mail: talk@breezecom.co.il

Brian Edmonston
Octavian Sarca
E-mail: brian@icoding.com
E-mail: Osarca@redlinecommunications.com

Venue:
Denver Colorado

Base Document:
To support comment resolution process

Purpose:
To present XXXX

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) <http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been
Reflections on ‘FEC Ad-Hoc Group’ Resolutions

Tal Kaitz
BreezeCOM
Brian Edmonston
I Coding
Octavian Sarca
Red Line Communications
Background

• One of the topics discussed in the FEC ad-hoc: ‘Optimality of the current FEC scheme’

• Current draft (TG3) uses outer RS + inner CC.
 – With very short block lengths. Different from standard practice.

• Comparison with CC only showed that:
 – CC better than RS+CC @ PER >10^{-2}… 10^{-3}
 – RS+CC is better at PER < 10^{-2}… 10^{-3}
 – Cross over points depends on the block length and rate.

• Decision was taken to adopt RS+CC as mandatory mode for TG4.
 – Hence RS+CC is the mandatory scheme for OFDM/OFDMA
Background (cntd).

- Authors feel that this decision is technically wrong.
 - Will increase complexity with no real gain.
 - In this contribution, we shall try to convince the working group on this.

- Please note:
 - A technical debate.
 - Ad hoc procedures were immaculate.

😊 Thnx Garik for chairing the ad-hoc.
Outline

• Summary of simulations results presented
• Discussion points:
 – At what PER to compare ?
 – “It’s unthinkable not to use RS”
 – Can RS erasures be used ?
 – Can the number of RS corrections be used as a redundancy check ?
Simulations results

• Simulation results from 5 individuals
 – Charlie Chan (Who brought up this issue)
 – Einan Regev, Yossi Segal, Brian Edmonston, Tal Kaitz
Summary of results

<table>
<thead>
<tr>
<th>Source</th>
<th>Conditions</th>
<th>Results</th>
<th>$@ P_{\text{error/byte}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlie</td>
<td>QPSK $\frac{1}{2}$</td>
<td>CC better by 0.5 dB.</td>
<td>$1.3 \cdot 10^{-5}$</td>
</tr>
<tr>
<td></td>
<td>AWGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brian</td>
<td>QPSK $\frac{1}{2}$</td>
<td>CC better by 0.4 dB</td>
<td>$4 \cdot 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td>AWGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brian</td>
<td>QAM16 $\frac{3}{4}$</td>
<td>CC better by 0.4 dB</td>
<td>$1.2 \cdot 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td>AWGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einan</td>
<td>QPSK 1/2-</td>
<td>CC better by ~1dB</td>
<td>10^{-4}…10^{-5}</td>
</tr>
<tr>
<td></td>
<td>QAM64 $\frac{3}{4}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUI #1</td>
<td>In all cases</td>
<td></td>
</tr>
</tbody>
</table>
Summary of results, cntd

<table>
<thead>
<tr>
<th>Source</th>
<th>Conditions</th>
<th>Results</th>
<th>@ P_{error/byte}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tal</td>
<td>QAM16 ½ AWGN</td>
<td>CC better by 0.4 dB.</td>
<td>$1 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Tal</td>
<td>QAM 64 ¾ AWGN</td>
<td>CC and RSV equal</td>
<td>$2 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Tal</td>
<td>QAM 64 2/3 AWGN</td>
<td>CC and RSV equal</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Tal</td>
<td>QAM16 ½ SUI #3 4Mhz</td>
<td>CC better by 1.7dB</td>
<td>10^{-5}</td>
</tr>
</tbody>
</table>
Summary of results, cntd

<table>
<thead>
<tr>
<th>Source</th>
<th>Conditions</th>
<th>Results</th>
<th>@ P_{error}/byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yossi</td>
<td>QAM16 ½ AWGN</td>
<td>CC and RSV equal. RSV+Erasure better then CC by 0.7dB</td>
<td>$1 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Yossi</td>
<td>QAM 16 ¾ AWGN</td>
<td>CC better by 0.2dB RSV+Erasure Better by 0.8</td>
<td>$1 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Yossi</td>
<td>QAM 64 2/3 SUI#1 20MHz</td>
<td>RSV better than CC by 1.5 dB RSV+Erasure better than CC by 1.7dB</td>
<td>$3 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>Yossi</td>
<td>QPSK ½ SUI#1</td>
<td>RSV equal CC</td>
<td>$4 \cdot 10^{-5}$</td>
</tr>
</tbody>
</table>
Results

- Majority of contributors:
 - CC is better at 10^{-5} error event /byte.
 - RS+CC is better at lower error probabilities.

- Disagreement with Yossi on Multipath results. (Not same conditions were simulated)
- Yossi showed the advantage of using soft output and erasures.
At what PER to compare

- What code is better depends on required PER.
- ARQ systems can operate well with PER $10^{-2} \ldots 10^{-3}$
- Degradation due to TCP/IP
Degradation due to TCP

Source: Wendy Wang, Aperto Networks
Degradation due to TCP

• Octavian’s point:
 – Our system has 6-8 modes, rates for two consecutive MODES is 1.33…1.5, and the SNR difference is 2-3dB.
 – Suppose we operate at MODE4 with an SNR that provides say PER=10^-2.
 – According to Wendy, this will reduce our throughput to 93%.
 – We panic (TCP) and switch to mode3 which is 66% data rate.
 – 93%* 100% <> 100% *66 % ?
By requiring very low PER we reduce efficiency
PER working point

• PER is not governed by FEC alone:
 – Fades, interference may govern

• Under fades or interference we experience a temporal loss of SNR.
 – Momentarily we’ll be in high PER region
 – At this point FEC performance will be crucial.
“RS+CC have been around”

- We have nothing against concatenated schemes.
- A properly designed RS+CC with long blocks will perform well even in high PER.
- The common practice is add the outer scheme without reducing the inner CC.
- In our scheme the CC rate is weakened to keep overall rate as is.
- This significantly weakens the code.
Use of erasures

- Performance maybe improved by using Viterbi soft outputs and erasures:
- Literature\(^1\) (Zeoli 1973) shows 0.3 dB in QPSK.
- Yossi showed higher improvements for multipath. Requires further study.

\(^1\)G.W. Zeoli “Coupled Decoding of Block–Convolutional Concatenated Codes”, IEEE Trans on Comm, vol COM–21 1973, M Charlie Cahn provide this reference
Use of erasures

• To use erasures we need to provide soft output from Viterbi decoder.
• Requires changes and additional complexity of Viterbi decoder.
• No longer an off the shelf design block
• If you want to give your product an edge: use turbo codes which are now defined.
Can we use RS as redundancy check?

- Yes but at expense of error correction capability.
- The number of corrections can be used only as a ‘quality indicator’ of received payload.
- This can be done also in CC case, by computing un-coded BER.
Summary

• The current FEC scheme is not optimal
• At packet error rates of interest, this system performs worse than a simpler convolutional code.
• It can be enhanced by using erasure but
 – At major increased complexity
 – With questionable benefits
 – We already have an advanced FEC (Turbo)
• It is different from the standard practice.
Conclusions

• Let’s not use a complicated system instead of a simpler and a better one

• We believe that CC should be the mandatory scheme for 16a (OFDM) and 16b.