SC-FDE System Capacity and Modulation Efficiency

IEEE 802.16 Presentation Submission Template (Rev. 8.2)

Document Number: IEEE 802.16abp-01/47

Date Submitted:
2001-11-15

Source:
Anader Benyamin-Seeyar
Harris Corporation Inc.
mailto: [abenyami@harris.com]

Brian Eidson
Conexant Systems Inc
mailto: brian.eidson@conexant.com

Venue: IEEE 802.16 Session #16

Base Document:
IEEE 802.16abc-01/47

Purpose:
This contribution is presented to the Task Group in Session #16 to update the Single Carrier PHY throughput and channel efficiency clause of the IEEE802.16ab-01/r2 document.

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) <http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.

SC-FDE System Capacity and Modulation Efficiency

Anader Benyamin-Seeyar
Harris Corporation Inc.
3 Hotel de Ville
Dollard-des-Ormeaux, Quebec, Canada, H9B 3G4
Voice: (514) 845-8850
Fax: (514) 871-4859
mailto: abenyami@harris.com

Brian Eidson
Conexant Systems Inc
9868 Scranton Rd
San Diego 92121, USA
Voice: (858) 713-4720
Fax: (858) 713-3555
mailto: brian.eidson@conexant.com
Contribution

• Incorporate provided text as revision of Section 8.3.4.15 of document 80216ab-01_01r2.

• This contribution completely simplifies and merges two subsections into one with more accurate results.
Continuous transmission Format:

- Frame Preamble
- Transported Frame
- Frame Preamble
- Transported Frame

- H_{symb} \quad \text{Interval between Preambles} \quad (I \text{ symb}) \quad \text{H}_{symb} \quad \text{Interval between Preambles} \quad (I \text{ symb})

- Frame Preamble
- Transported Frame

- H_{symb} \quad I_{symb}

- Frame Preamble
- Transported Frame

- MAC Frame Control (Broadcast)
- User Data

User Data Sequenced in Decreasing order of 'modulation type' robustness (e.g., QPSK, 16-QAM, 64-QAM; or 1.5 bits/symb, 2 bits/symb, etc.)

Most Robust Modulation Type (Rate 1/2 QPSK)
Burst transmissions Frame Format

Burst Preamble

Payload (& Optional Pilot Words)

Rx

Interval for Ramp Down and Delay Spread to Clear Receiver

Ramp Down (clear TX filter with zeros)

TX filter input initialized with zeros and driven by Preamble
Overlap Save Scheme of Arbitrary Continuous Payload

Continuous Payload (\& Optional Pilot Words)
Overlap Save Scheme of Arbitrary Bursty Payload

- Burst Preamble
- Burst Payload (\& Optional Pilot Words)
- RxDs
- UW
- Rx Zero pad
Parameters and Values Defining Operating Modes for SC Systems

<table>
<thead>
<tr>
<th>Selection Level</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Set of Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>System-Dependent Parameters</td>
<td>Channel Bandwidth (MHz)</td>
<td>W</td>
<td>1.75, 3.5, 7, 14, 1.5, 3, 6, 12</td>
</tr>
<tr>
<td></td>
<td>Design Maximum Delay Spread (μsec)</td>
<td>d</td>
<td>4, 10, 20</td>
</tr>
<tr>
<td></td>
<td>Spectral Guard Factor</td>
<td>γ</td>
<td>0.18, 0.25</td>
</tr>
<tr>
<td></td>
<td>Symbol Rate (MSymb/sec)</td>
<td>R</td>
<td>$R = (1 + \gamma)W$</td>
</tr>
<tr>
<td>Link-Dependent Parameters</td>
<td>Number of Constellation States</td>
<td>M</td>
<td>4, 16, 64</td>
</tr>
<tr>
<td></td>
<td>Convolutional (Inner) Code Rate</td>
<td>rI</td>
<td>1/2, 2/3, 3/4, 7/8</td>
</tr>
<tr>
<td></td>
<td>Reed-Solomon (Outer) Code Rate</td>
<td>rO</td>
<td>$239 / 255 = 0.937$</td>
</tr>
<tr>
<td>Traffic-Dependent Parameter</td>
<td>Burst Data Payload Size for uplink (in Bytes)</td>
<td>P</td>
<td>239, 717, 1195, 1673</td>
</tr>
<tr>
<td>Traffic-Dependent Parameter</td>
<td>Continuous Data Payload Size for downlink (in Bytes)</td>
<td>P</td>
<td>1673, 2151, 2629, 3585</td>
</tr>
</tbody>
</table>
System throughput for the burst transmission modes

\[U = R \cdot d, \text{ rounded up to the nearest power of 2.} \]

\[T_{\text{burst}} = \frac{8PR \log_2 (M)}{\left(\frac{8P}{\kappa_1 r_0} + (A + U) \log_2 (M) \right)} \]
System throughput for the continuous transmission modes

\[T_{\text{cont}} = \frac{8PR \log_2 (M)}{\left(\frac{8P}{r_I r_O} + A \log_2 (M)\right)} \]

P is the burst data size and A is used as the average frame preamble size (in symbols).

The choice of A=2U for the uplink and the choice of A=4U for the downlink.
SC Channel Efficiency

\[E_{\text{burst}} = \frac{T_{\text{burst}}}{W} = \frac{T_{\text{burst}}}{(1 + \gamma)R} = \frac{8P \log_2(M)}{(1 + \gamma) \left(\frac{8P}{r_I r_O} + (A + U) \log_2(M) \right)} \]

\[E_{\text{cont}} = \frac{T_{\text{cont}}}{W} = \frac{T_{\text{cont}}}{(1 + \gamma)R} = \frac{8P \log_2(M)}{(1 + \gamma) \left(\frac{8P}{r_I r_O} + A \log_2(M) \right)} \]
Throughput for various Models in 1.75 MHz Channels (Uplink Burst)

System Throughput for Overlap Save Technique

(for Single Carrier Burst Mode U/L with $W = 1.75$ MHz bandwidth)

<table>
<thead>
<tr>
<th>Symbol Rate (MS/sec)</th>
<th>Symbol Design (Sample Rate)</th>
<th>Convolutional Code (Number of States)</th>
<th>System Throughput (in Mbits/sec)</th>
<th>System Efficiency (in MBits/sec/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>239</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>717</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1195</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1673</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>($P = 1673$)</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>4</td>
<td>1/2</td>
<td>1.37</td>
<td>1.39</td>
</tr>
<tr>
<td>2/3</td>
<td>7/8</td>
<td>1.82</td>
<td>1.84</td>
<td>1.85</td>
</tr>
<tr>
<td>3/4</td>
<td>2/3</td>
<td>2.05</td>
<td>2.07</td>
<td>2.08</td>
</tr>
<tr>
<td>1/2</td>
<td>2/3</td>
<td>2.38</td>
<td>2.42</td>
<td>2.43</td>
</tr>
<tr>
<td>2/3</td>
<td>5/6</td>
<td>2.72</td>
<td>2.76</td>
<td>2.77</td>
</tr>
<tr>
<td>3/4</td>
<td>7/8</td>
<td>4.03</td>
<td>4.12</td>
<td>4.14</td>
</tr>
<tr>
<td>2/3</td>
<td>5/6</td>
<td>5.31</td>
<td>5.47</td>
<td>5.51</td>
</tr>
<tr>
<td>3/4</td>
<td>1/2</td>
<td>6.56</td>
<td>6.82</td>
<td>6.87</td>
</tr>
<tr>
<td>2/3</td>
<td>5/6</td>
<td>1.36</td>
<td>1.38</td>
<td>1.38</td>
</tr>
<tr>
<td>3/4</td>
<td>2/3</td>
<td>1.80</td>
<td>1.83</td>
<td>1.84</td>
</tr>
<tr>
<td>2/3</td>
<td>5/6</td>
<td>2.01</td>
<td>2.06</td>
<td>2.07</td>
</tr>
<tr>
<td>3/4</td>
<td>7/8</td>
<td>2.34</td>
<td>2.40</td>
<td>2.41</td>
</tr>
<tr>
<td>2/3</td>
<td>5/6</td>
<td>6.22</td>
<td>6.69</td>
<td>6.79</td>
</tr>
<tr>
<td>3/4</td>
<td>1/2</td>
<td>1.33</td>
<td>1.37</td>
<td>1.38</td>
</tr>
<tr>
<td>2/3</td>
<td>7/8</td>
<td>1.74</td>
<td>1.82</td>
<td>1.83</td>
</tr>
<tr>
<td>3/4</td>
<td>5/6</td>
<td>1.95</td>
<td>2.04</td>
<td>2.06</td>
</tr>
<tr>
<td>2/3</td>
<td>1/2</td>
<td>2.25</td>
<td>2.37</td>
<td>2.39</td>
</tr>
<tr>
<td>3/4</td>
<td>7/8</td>
<td>2.54</td>
<td>2.70</td>
<td>2.73</td>
</tr>
<tr>
<td>2/3</td>
<td>5/6</td>
<td>3.65</td>
<td>3.98</td>
<td>4.06</td>
</tr>
<tr>
<td>3/4</td>
<td>1/2</td>
<td>4.68</td>
<td>5.23</td>
<td>5.36</td>
</tr>
<tr>
<td>2/3</td>
<td>7/8</td>
<td>5.63</td>
<td>6.44</td>
<td>6.64</td>
</tr>
<tr>
<td>3/4</td>
<td>5/6</td>
<td>6.72</td>
<td>6.72</td>
<td>6.72</td>
</tr>
</tbody>
</table>

System Efficiency

- **Packet Size (P in Bytes)**: 239, 717, 1195, 1673
- **System Efficiency (in MBits/sec/Hz)**: ($P = 1673$)

Link-Dependent Parameters

- **Symbol Rate (MS/sec)**
- **Symbol Design (Sample Rate)**
- **Convolutional Code (Number of States)**

System-Dependent Parameters

- **Convolutional Code (Number of States)**
- **Packet Size (P in Bytes)**
Throughput for various Models in 6 MHz Channels

Downlink Continuous

<table>
<thead>
<tr>
<th>Symbol Design</th>
<th>Convolutional Rate Spread Number of States QAM States QAM Code (MS/sec) (U in Symbols)</th>
<th>Packet Size (P in Bytes)</th>
<th>System Efficiency (in MBits/sec/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>4.69</td>
<td>2151</td>
<td>6.02</td>
</tr>
<tr>
<td>2/3</td>
<td>6.22</td>
<td>2629</td>
<td>6.69</td>
</tr>
<tr>
<td>3/4</td>
<td>6.98</td>
<td>3585</td>
<td>7.53</td>
</tr>
<tr>
<td>7/8</td>
<td>8.12</td>
<td>12.03</td>
<td>7.88</td>
</tr>
<tr>
<td>1/2</td>
<td>9.24</td>
<td>14.00</td>
<td>10.03</td>
</tr>
<tr>
<td>3/4</td>
<td>13.65</td>
<td>14.48</td>
<td>15.00</td>
</tr>
<tr>
<td>2/3</td>
<td>17.94</td>
<td>14.81</td>
<td>19.96</td>
</tr>
<tr>
<td>64</td>
<td>22.10</td>
<td>19.47</td>
<td>24.89</td>
</tr>
<tr>
<td>1/2</td>
<td>4.62</td>
<td>4.92</td>
<td>5.01</td>
</tr>
<tr>
<td>2/3</td>
<td>6.10</td>
<td>6.54</td>
<td>6.67</td>
</tr>
<tr>
<td>3/4</td>
<td>6.83</td>
<td>7.34</td>
<td>7.50</td>
</tr>
<tr>
<td>7/8</td>
<td>7.91</td>
<td>8.54</td>
<td>8.74</td>
</tr>
<tr>
<td>1/2</td>
<td>8.97</td>
<td>9.74</td>
<td>9.98</td>
</tr>
<tr>
<td>16</td>
<td>13.07</td>
<td>14.45</td>
<td>14.90</td>
</tr>
<tr>
<td>2/3</td>
<td>16.94</td>
<td>19.06</td>
<td>19.77</td>
</tr>
<tr>
<td>64</td>
<td>20.60</td>
<td>23.58</td>
<td>24.60</td>
</tr>
<tr>
<td>1/2</td>
<td>4.48</td>
<td>4.87</td>
<td>4.95</td>
</tr>
<tr>
<td>2/3</td>
<td>5.86</td>
<td>6.44</td>
<td>6.63</td>
</tr>
<tr>
<td>3/4</td>
<td>6.53</td>
<td>7.22</td>
<td>7.45</td>
</tr>
<tr>
<td>7/8</td>
<td>7.51</td>
<td>8.38</td>
<td>8.67</td>
</tr>
<tr>
<td>1/2</td>
<td>8.47</td>
<td>9.53</td>
<td>9.89</td>
</tr>
<tr>
<td>16</td>
<td>12.03</td>
<td>14.00</td>
<td>14.69</td>
</tr>
<tr>
<td>2/3</td>
<td>15.24</td>
<td>18.30</td>
<td>19.41</td>
</tr>
<tr>
<td>64</td>
<td>18.14</td>
<td>22.42</td>
<td>24.04</td>
</tr>
</tbody>
</table>

System Throughput for Overlap Save Technique

(Single Carrier Continuous Mode D/L with W = 6 MHz bandwidth)

<table>
<thead>
<tr>
<th>Packet Size (P in Bytes)</th>
<th>(in MBits/sec/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1673</td>
<td>4.69</td>
</tr>
<tr>
<td>2151</td>
<td>4.95</td>
</tr>
<tr>
<td>2629</td>
<td>5.00</td>
</tr>
<tr>
<td>3585</td>
<td>5.02</td>
</tr>
<tr>
<td>12.03</td>
<td>0.84</td>
</tr>
<tr>
<td>14.00</td>
<td>1.12</td>
</tr>
<tr>
<td>14.90</td>
<td>1.25</td>
</tr>
<tr>
<td>19.47</td>
<td>1.46</td>
</tr>
<tr>
<td>19.81</td>
<td>1.67</td>
</tr>
<tr>
<td>19.96</td>
<td>2.50</td>
</tr>
<tr>
<td>24.89</td>
<td>3.33</td>
</tr>
<tr>
<td>4.92</td>
<td>5.01</td>
</tr>
<tr>
<td>6.54</td>
<td>6.67</td>
</tr>
<tr>
<td>7.34</td>
<td>1.25</td>
</tr>
<tr>
<td>8.54</td>
<td>1.46</td>
</tr>
<tr>
<td>9.74</td>
<td>1.66</td>
</tr>
<tr>
<td>14.45</td>
<td>2.48</td>
</tr>
<tr>
<td>19.06</td>
<td>3.30</td>
</tr>
<tr>
<td>23.58</td>
<td>4.10</td>
</tr>
<tr>
<td>4.87</td>
<td>0.83</td>
</tr>
<tr>
<td>6.44</td>
<td>1.11</td>
</tr>
<tr>
<td>7.22</td>
<td>1.24</td>
</tr>
<tr>
<td>8.38</td>
<td>1.45</td>
</tr>
<tr>
<td>9.53</td>
<td>1.65</td>
</tr>
<tr>
<td>14.00</td>
<td>2.45</td>
</tr>
<tr>
<td>18.30</td>
<td>3.24</td>
</tr>
<tr>
<td>22.42</td>
<td>4.01</td>
</tr>
</tbody>
</table>