Two suggestions for Wideband OFDM Systems using frequency diversity

IEEE 802.16 Presentation Submission Template (Rev. 8.21)

Document Number:
IEEE 802.16abp-01/59

Date Submitted:
2001-11-19

Source:
PanYuh Joo, JungJe Son, DaeEop Kang
Samsung Electronics
9th Fl, Samsung Plaza Bldg. 263,
Seohyeon-Dong, Pundang-Gu,
Sungnam-Shi, Kyunggi-Do,
Korea 463-050 Pundang P.O. BOX 32

Voice: +82-31-779-6533
Fax: +82-31-779-8003
E-mail: panyuh@samsung.com

Venue: 802.16 meeting, Nov 12-16, 2001, Austin, TX

Purpose: This presentation presents the concept for the proposed new diversity scheme feature.

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) <http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Two suggestions for Wideband OFDM Systems using frequency diversity

PanYuh Joo

Samsung Electronics
Objective

Idea
Efficient utilized methods
of frequency diversity
in OFDM system

Problem of STBC-OFDM
• Limitation in Performance
• Complexity increase
 as Number of Antenna increase
• Transmission rate decrease
 as Number of Antenna increase

Advantage of STFBC-OFDM
• enhancement in BER
 (using Frequency Diversity)
• simple structure
 (do not increase number of antennas)

STBC: space time block code
STFBC: space time frequency block code

3/17
Introduction

• Diversity Techniques
 – Time Diversity : Channel Coding, Interleaving
 – Frequency(Path) Diversity : Coded-OFDM, Spread Spectrum
 – Space(Antenna) Diversity
 • Transmit Diversity
 – Space-Time Code (Space-Time Trellis Code, Space-Time Block Code)
 • Receiver Diversity
 – Rake Receiver, Selection Diversity

• MIMO Systems
 – Spatial Multiplexing
 • Capacity → increase in transmission rate (BLAST)
 – MIMO Diversity
 • Diversity gain → Performance Improvement (Transmit Diversity using Space-Time Code)
Space-Time Block Coding - I

• Space-Time Block Code
 – STBC is one of the simplest STC schemes.
 • Only simple linear processing at the receiver is required.
 – Maximum diversity gain
 • # of Tx antenna × # of Rx antenna

• Space-Time Block Coded OFDM (STBC-OFDM)
 – OFDM: robust in channel Environments
 + STBC: Diversity Gain
Space-Time Block Coding - II

- **Encoding Process**

 Transmitted Signal

 \[
 \begin{bmatrix}
 c_1 \\
 c_2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 c_1^* \\
 c_2^*
 \end{bmatrix}
 \]

- **Decoding Process**

 Received Signal

 \[
 r_1 = h_1 c_1 + h_2 c_2 + n_1
 \]
 \[
 r_2 = -h_1 c_2^* + h_2 c_1^* + n_2
 \]

 \[
 r = \begin{bmatrix}
 r_1 \\
 r_2^* \end{bmatrix}^T = H c + n
 \]

 Channel Matrix

 \[
 H = \begin{bmatrix}
 h_1 & h_2 \\
 -h_2^* & h_1^*
 \end{bmatrix}
 \rightarrow
 H^H H = \rho \cdot I, \quad \rho = |h_1|^2 + |h_2|^2
 \]

 ML Decoder

 \[
 \hat{c} = \arg \min_{\hat{c} \in \mathcal{C}} \| r - H \cdot \hat{c} \|^2
 \rightarrow
 \hat{c} = \arg \min_{\hat{c} \in \mathcal{C}} \| \hat{r} - \rho \cdot \hat{c} \|^2,
 \]

 where

 \[
 \hat{r} = H^H r = \rho \cdot c + \hat{n}
 \]
Space-Time Block Coding - III

• Some STBC Examples for Multiple Transmit Antennas

• In the case of using more than three transmission antennas, simultaneously satisfy code orthogonality and transmission rate of STBC as 1, do not exists (Proved by V. Tarokh)

<table>
<thead>
<tr>
<th>Num. of Tx. Ant.</th>
<th>Space-Time Block Code</th>
<th>BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>• (2x2) Matrix: 2 symbol transmission in 2Ts (Proposed by Alamouti)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>• (8x3) Matrix: 4 symbol transmission in 8Ts (Proposed by Tarokh)</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>• (8x4) Matrix: 4 symbol transmission in 8Ts (Proposed by Tarokh)</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Space-Time and Frequency Block Coding for Wideband OFDM - I

• Motivation
 – Request More reliable system in next generation comm. system
 • Request of higher Diversity Gain \rightarrow should increase the number of antennas
 – Diversity Gain of STBC Depends on number of Tx antennas
 • To improve in performance should increase number of tr antenna
 • Of number of antenna increase HW load seriously increases.
 • Especially, In the case of STBC-OFDM compare to single carrier system, operational complexity increases depends on sub-carrier number. \rightarrow operational complexity greatly increases
 In OFDM, an STBC-OFDM system that have more than 3 tx antennas is not easy in implementation.
 – The STBC using more than 3 tx antennas transmission rate decreases.
 – OFDM can obtain frequency diversity in simple method.
Space-Time and Frequency Block Coding Wideband OFDM - II

Design consideration

- **Maximum Frequency Diversity Gain**
 - # of Tx antenna × # of rx antenna × frequency gain

- **Simple Structure**
 - Should not increase number of transmission antenna.
 - To earn frequency Diversity Gain in Decoding process it should be incorporated with Linear Processing

- Compatibility with **STBC-OFDM system**

- **Minimize complexity increase**
- **Maximize Diversity Gain**

→ **Space-Time and Frequency Block Coding Technique**
Space-Time and Frequency Block Coding Wideband OFDM - III

- STFBC Transmitter

\[s = \begin{bmatrix} s(0) & \cdots & s(N-1) \end{bmatrix}^T \]

Frequency Coder: Frequency diversity enabling part in STBC-OFDM system
Frequency Coder

- Replicate original signal
- Cyclically shift sub-carrier X_1 produce X'_1
- X_1 and X_1' is get into the original STC symbol mapping such as

 - $X_1 = s = [s(0), \ldots, s(N-1)]^T$
 - $X_2 = X_1' = [s(N-d), \ldots, s(N-1), s(0), \ldots, s(N-d-1)]^T$
 - The shift term d can be obtained as following

$$\Delta k = d = \left\lfloor \frac{N}{L} \right\rfloor \cdot \left\lfloor \frac{L}{2} \right\rfloor$$
Correlation of sub-carriers with 0_{th} sub-carrier

\[\Delta k = d = \left\lfloor \frac{N}{L} \right\rfloor \cdot \left\lfloor \frac{L}{2} \right\rfloor \]
Space-Time and Frequency Block Coding Wideband OFDM - IV

• STFBC Receiver

\[
\tilde{r} = \frac{1}{\rho} H^H r
\]

\[
\begin{bmatrix}
\hat{s}(0) \\
\vdots \\
\hat{s}(N-1)
\end{bmatrix}
\]

\text{Space-Time and Frequency Block Decoder}
Frequency Decoder

• Inverse cyclically shifted sub-carrier of the estimated symbol \(X_2 \) to produce the “replication” of symbol \(X_1 \).
• \(X_1 \) and \(X_2’ \) is combined as frequency diversity manner such that
 \[
 X_1 = s = [s(0), \ldots, s(N-1)]^T
 \]
 \[
 X_2’ = X_1(k-d) \mod N = [s(0), \ldots, s(N-1)]^T
 \]
• The inverse shift term \(d \) can be obtained from channel estimation process, proportional to Channel impulse response \(L \).
Space-Time and Frequency Block Coding Wideband OFDM - V

• Performance Result (1)

• Simulation environments
 – Channel Order : 10
 – 16-QAM
 – Independent Rayleigh Fading Channel
 – Perfect Channel & Order Information
 – 4 tx antenna using STBC and 2 tx antenna using STFBC shows same performance
 – Compare to 3 tx antenna using STBC in 10^{-4} SER shows approximate 2.5dB SNR gain
Space-Time and Frequency Block Coding Wideband OFDM - VI

- Performance Result (2)

- Simulation environments
 - Channel Order : 10
 - Independent Rayleigh Fading Channel
 - 2 tx antennas and 1 rx antenna
 - Perfect Channel & Order Information
 - 2bits/sub-carrier
 - $\ln 10^{-5}$ BER approx. 5dB performance improvements.
 - If correlation between tx antennas increases, the performance improves impressively.
Closing Comment

• **Space-Time Block Coding (STBC)**
 – Simple structure and Full space diversity gain
 – But there are many problem when using more than 3 antennas in OFDM system (HW and operational complexity, decrease in tx rate)

• **Space-Time and Frequency Block Coding (STFBC)**
 – Overcome the problem of STBC-OFDM
 – A scheme, Not only Maximize Space Diversity but also frequency Diversity gain
 – Using frequency diversity so that increase the number of tx antenna is not required.
 – Compatible to existing STBC-OFDM

• **Two suggestion**
 – **Tx diversity scheme for OFDM system is desirable to use the STFBC is strongly requested.**
 – **The code combining in H-ARQ is also desirable to adapt the frequency diversity in this proposal.**