<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group [http://ieee802.org/16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Figures accompanying ballot</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2002-1-4</td>
</tr>
<tr>
<td>Source(s)</td>
<td>Carl Eklund Voice: +358718036566</td>
</tr>
<tr>
<td></td>
<td>Nokia Fax: +358718036851</td>
</tr>
<tr>
<td></td>
<td>P.O. BOX 407 [mailto:carl.eklund@nokia.com]</td>
</tr>
<tr>
<td></td>
<td>FIN-00045 Nokia Group, Finland</td>
</tr>
<tr>
<td>Re:</td>
<td>Working group letter ballot on IEEE 802.16a/D1-2001</td>
</tr>
<tr>
<td>Abstract</td>
<td>The document contains figures referenced in comments by the author</td>
</tr>
<tr>
<td>Purpose</td>
<td>This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.</td>
</tr>
<tr>
<td>Notice</td>
<td>The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.</td>
</tr>
<tr>
<td>Release</td>
<td>The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) [http://ieee802.org/16/ipr/patents/policy.html], including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.” Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair [mailto:r.b.marks@ieee.org] as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site [http://ieee802.org/16/ipr/patents/notices].</td>
</tr>
</tbody>
</table>
Figures referenced in comments

Carl Eklund
Nokia

1.

The Fragmentation sub-header (FSH) is shown in Table 1.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation sub-header () {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>2 bits</td>
<td></td>
</tr>
<tr>
<td>FSN</td>
<td>3 bits</td>
<td>Bits 2:0</td>
</tr>
<tr>
<td>reserved for CS use</td>
<td>3 bits</td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>2 bits</td>
<td></td>
</tr>
<tr>
<td>FSNR</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>FSN</td>
<td>3</td>
<td>Bits 5:3</td>
</tr>
<tr>
<td>reserved</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TSN</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The fields of the Fragmentation sub-header are defined in Table 2.

Table 2—Fragmentation Sub-header Fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (bits)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>2</td>
<td>Fragmentation Control indicates the fragmentation state of the payload: 00 = no fragmentation, 01 = last fragment, 10 = first fragment, 11 = continuing (middle) fragment</td>
</tr>
<tr>
<td>FSN</td>
<td>6</td>
<td>Fragmentation Sequence Number defines the sequence number of the current SDU fragment. This field increments by one (modulo 64) for each fragment, including unfragmented SDUs.</td>
</tr>
<tr>
<td>FCR</td>
<td>2</td>
<td>Replicates the value of the FC bits in the original transmission unit</td>
</tr>
<tr>
<td>FSNR</td>
<td>6</td>
<td>Replicates the FSN of the original transmission unit</td>
</tr>
<tr>
<td>TSN</td>
<td>11</td>
<td>Transmission Unit Sequence number</td>
</tr>
</tbody>
</table>

The Packing sub-header is defined in Table 3.

Table 3—Packing Sub-header

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing sub-header () {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>2 bits</td>
<td></td>
</tr>
<tr>
<td>FSN</td>
<td>3 bits</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>11 bits</td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>2 bits</td>
<td></td>
</tr>
<tr>
<td>FSNR</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>FSN</td>
<td>3</td>
<td>Bits 5:3</td>
</tr>
<tr>
<td>reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSN</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields of the packing sub-header are defined in Table 4.
Table 4—Packing Sub-header Fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (bits)</th>
<th>Description</th>
</tr>
</thead>
</table>
| FC | 2 | Fragmentation Control
Indicates the fragmentation state of the payload:
00 = no fragmentation
01 = last fragment
10 = first fragment
11 = continuing (middle) fragment |
| FSN | 6 | Fragmentation Sequence Number
Defines the sequence number of the current SDU fragment. This field increments by one (modulo 64) for each fragment, including unfragmented SDUs. |
| Length | 11 | The length in bytes of the MAC SDU or SDU fragment, including the two-byte packing sub-header. |
| FCR | 2 | Replicates the value of the FC bits in the original transmission unit |
| FSNR | 6 | Replicates the FSN of the original transmission unit |
| TSN | 11 | Transmission Unit Sequence number |

Table 5—ARQ Feedback Sub-header Fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (bits)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSN</td>
<td>11</td>
<td>Transmission Unit Sequence number</td>
</tr>
<tr>
<td>reserved</td>
<td>5</td>
<td>Acknowledgement map</td>
</tr>
</tbody>
</table>

-
Table 6—ARQ_feedback_IE

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARQ_feedback_IE()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CID</td>
<td>16 bits</td>
<td></td>
</tr>
<tr>
<td>TSN</td>
<td>11 bits</td>
<td></td>
</tr>
<tr>
<td>reserved</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ACK MAP</td>
<td>16 bits</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7—ARQ Feedback Message Format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARQ_Feedback_Message_Format()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Message Type = 34</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Number of ARQ_feedback_IEs</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>for (i = 1; i < n; i++)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARQ_feedback_IE</td>
<td>32 bits</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First transmissions (MAC PDUs):

- TSN=0xF2, FC=01, FCR=01, FSN=0x05, FSNR=0x05
- TSN=0xF3, FC=10, FCR=10, FSN=0x06, FSNR=0x06

The retransmission case when no refragmentation is needed.

Retransmission of 0xF2:

- TSN=0xF2, FC=00, FCR=01, FSN=0x09, FSNR=0x05

Figure 1—Retransmission without refragmentation

The last block of the MAC SDU#1 is lost during the transmission. The modulation is changed to more robust and the retransmitted MAC PDU has to be refragmented.

Retransmission of 0xF2:

- TSN=0xF2, FC=01, FCR=01, FSN=0x09, FSNR=0x05
- TSN=0xF2, FC=10, FCR=01, FSN=0x0A, FSNR=0x05
- TSN=0xF2, FC=11, FCR=01, FSN=0x0B, FSNR=0x05

Figure 2—Retransmission with refragmentation