<table>
<thead>
<tr>
<th>Source(s)</th>
<th>Nico van Waes</th>
<th>Nokia Wireless Routers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re:</td>
<td>IEEE LMSC Sponsor Ballot of P802.16a/D5</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Proposed material referenced by submitted comments</td>
<td></td>
</tr>
<tr>
<td>Changes from r0:</td>
<td>Moved “Disable reception” on Rx side in figure 31b after issuance of ARQ-Reset 0x0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replaced Discard on Tx side in figure 31b with “Discard SDUs of which fragments have been sent”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replaced Error on Tx side in figure 31b with “Requestion deletion of this connection”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switched transmitter and receiver heading in figure 31c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inserted ARQ-Reset 0x2 transmission on the (corrected) transmitter side in figure 31c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inserted an additional “Clear T17” in 31c</td>
<td></td>
</tr>
<tr>
<td>Notice</td>
<td>This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.</td>
<td></td>
</tr>
<tr>
<td>Release</td>
<td>The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.</td>
<td></td>
</tr>
<tr>
<td>Patent Policy and Procedures</td>
<td>The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html, including the statement “IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard.” Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices</td>
<td></td>
</tr>
</tbody>
</table>
Stuff

Nico van Waes
Nokia Wireless Routers

6.2.2.2.1 Fragmentation Subheader

Replace Table 7 through Table 8 with:

Table 7—Fragmentation Subheader format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation Subheader()</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| FC | 2 bits | Indicates the fragmentation state of the payload:
| | | 00 = no fragmentation
| | | 01 = last fragment
| | | 10 = first fragment
| | | 11 = continuing (middle) fragment |
| if (Type bit#3) | | See Table 4. |
| FSN | 3 bits | Sequence number of the current SDU fragment.
| | | This field increments by one (modulo 8) for each fragment, including unfragmented SDUs. |
| else | | |
| FSN | 11 bits | Sequence number of the current SDU fragment.
| | | This field increments by one (modulo 2048) for each fragment, including unfragmented SDUs. |
| Reserved | 3 bits | |
| } | | |
6.2.2.2.3 Packing Subheader

Replace Table 11 through Table 12 with:

Table 11—Packing Subheader format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing Subheader() []</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| FC | 2 bits | Indicates the fragmentation state of the payload:
| | | 00 = no fragmentation
| | | 01 = last fragment
| | | 10 = first fragment
| | | 11 = continuing (middle) fragment |
| if (Type bit#3) | | See Table 4. |
| FSN | 3 bits | Sequence number of the current SDU fragment. This field increments by one (modulo 8) for each fragment, including unfragmented SDUs. |
| else | | |
| FSN | 11 bits | Sequence number of the current SDU fragment. This field increments by one (modulo 2048) for each fragment, including unfragmented SDUs. |
| Length | 3 bits | |
| } | | |

6.2.2.3.30 ARQ Feedback message

An SS supporting ARQ shall be able to receive and process the ARQ Feedback message.

The ARQ Feedback message, as shown in Table 56a, can be used to signal any combination of different ARQ ACKs (cumulative, selective, selective with cumulative). The message shall be sent on the appropriate basic management connection.

Table 56a—ARQ Feedback message format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARQ_Feedback_Message_Format() {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management message Type =33</td>
<td>8 bits</td>
<td>See [REF]6.2.3.4.3.</td>
</tr>
<tr>
<td>ARQ_Feedback_Payload</td>
<td>variable</td>
<td>See [REF]6.2.3.4.3.</td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARQ Feedback information shall be either sent using this ARQ Feedback message or by packing (“piggybacking”) the ARQ_Feedback_Payload as described in 6.2.3.4.3.
6.2.3.4.3 Packing ARQ Feedback Information Elements

An ARQ Feedback Payload (see Table 57a) consists of one or more ARQ Feedback Information Elements (see 6.2.4.2). The ARQ Feedback Payload may be sent on an ARQ or non-ARQ connection. However, policies based on implementation and/or QoS constraints may restrict the use of certain connections for transporting ARQ Feedback Payload. The ARQ Feedback Payload is treated like any other payload (SDU or fragments) from the packing perspective, except that only one ARQ Feedback Payload shall be present within a single MAC PDU.

Table 57a—ARQ Feedback Payload format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARQ_Feedback_Payload_Format()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>ARQ_Feedback_IE(last)</td>
<td>variable</td>
<td>Insert as many as desired, until last==TRUE See 6.2.4.2.</td>
</tr>
<tr>
<td>until (last)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The presence of an ACK Feedback Payload in a MAC PDU is indicated by the value of bit #4 of the Type field in the generic MAC header. When present, the first packed payload shall be the ARQ Feedback Payload. The Packing Subheader preceding the ARQ Feedback Payload indicates the total length of the payload including the Packing Subheader and all ARQ Feedback Information Elements within the payload. The FSN field of the Packing Subheader shall be ignored for the ARQ Feedback Payload and the FC bits shall be set to 00.

6.2.3.4.4 Transmitter state machine

![Figure 31a—ARQ transmit fragment states](image-url)
6.2.4.5.2 Transmitter state machine

Transmitter

Wait for ARQ Reset
Type = 0x0

ARQ Reset
Type = 0x0

Disable transmission

Send ARQ Reset
Type = 0x1

Set T17

Wait for ARQ Reset

Timeout T17

No

Retries exhausted?

Yes

Request deletion of this connection

ARQ Reset
Type = 0x2

Clear T17

ARQ_TX_WIN-
DOW_START = 0

Discard SDUs of which fragments have been sent

Enable transmission

Receiver

Initiate ARQ Reset

Send ARQ Reset
Type = 0x0

Disable reception

Set T17

Wait for ARQ Reset

ARQ Reset
Type = 0x1

ARQ_RX_WIN-
DOW_START = 0

Discard incomplete SDUs, deliver complete SDUs

Enable reception

Send ARQ Reset
Type = 0x2

End ARQ Reset

Timeout T17

No

Retries exhausted?

Yes

Error: Re-initialize MAC

Figure 31b—ARQ Reset message dialog - receiver initiated
Figure 31c—ARQ Reset message dialog - transmitter initiated
6.2.6.7.2 Centralized scheduling

6.2.9.13.3 Open Sponsor Channel

Figure 36c—MSH-CSCH schedule validity

Figure 54a—Mesh network synchronization and entry - New node - I
Figure 54b—Mesh network synchronization and entry - New node - II
8.4.11.1.3 Receiver rejection mask

The receiver shall comply with the following rejection mask.

Figure 54c—Mesh network synchronization and entry - sponsor node
Table 116bh—Receiver rejection mask parameters

<table>
<thead>
<tr>
<th>Channelization (MHz)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>9</td>
<td>9.5</td>
<td>10.5</td>
<td>11.5</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>4.5</td>
<td>4.75</td>
<td>5.25</td>
<td>6.75</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>