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1. Introduction 
This document proposes some modifications and improvements of the currently discussed version of the IEEE 
802.16m channel model. In particular, we suggest that (i) a full description of the temporal Rice factor (which is 
required to model stationary devices), (ii) a description of the elevation spectrum of the arriving waves for all 
environments, (iii) taking into account the random nature of the conventional (space-variant) Rice factor. 

The following sections first contain a motivation and intuitive description of the changes, followed by the 
explicit text modifications whose inclusion into the system evaluation methodology we propose.  

2. Motivation 
The channel model as proposed in the current (June 2007) version of the system evaluation methodology gives 
a good approximation to reality, but there are a number of points where improvements are important.  

 

First and foremost, the current definition of the temporal channel variations of stationary devices is incomplete. 
A complete specification requires not only the definition of the Doppler spectrum, but also of the “temporal K 
factor”, which describes the ratio of the energies of temporally variant contributions to the impulse response 
over that of the temporally invariant contributions. We propose a simple equation for this temporal K factor that 
is parameterized (based on data from the peer-reviewed literature) for different environments. Without the 
adoption of an equation for temporal Rice factors, system simulations are not possible (note that all 
environments include a finite percentage of users with zero mobility). 

Next, we note that the current specifications do not contain elevation spectra for all the environments. We 
therefore propose deterministic elevation spectra, and suggest a simple way of including them in the current 
simulation procedure. We postulate that the absence of elevation spectra leads to inaccuracies in the  

Last, but not least, extensive experiments have shown that the Rice factor is not a fixed value even in 
deterministic environments, but rather a random variable. We therefore suggest a simple model (lognormal 
distribution) for a random Rice factor. We furthermore also suggest an explicit model for the probability of line-
of-sight. 
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3. Suggested text 
The geometry-based stochastic models are created using the parameters listed in the Table 3. The channel 
realizations are obtained by a step-wise procedure described in the reference [Winner II]. 

In addition to the procedure described there, the following steps need to be used: 

1. Each path is associated with an elevation at both BS and MS. The elevation angles are chosen at random 
from the distribution specified in Table III.  

2. If a LOS component is present, then we first generate the Rice factor at random from a lognormal distribution 
whose mean and variance is given in Table 3. The total combined power of the LOS component and the  diffuse 
components is normalized to unity power so the coherent LOS component will have a relative amplitude 

1+K
K

  
3: If the TX and the RX are stationary, and the channel at time t is to be computed, then each cluster is made of 
a number of coherent (fixed) rays Nc and a number of scattered (variable) rays Ns (Nc + Ns = total number of 
rays per clusters).  

The variable rays are ascribed a bell-shaped Doppler spectrum as described in [Erceg et al. 2001]: 

 
where fm is the maximum Doppler rate (suggested value: 2 Hz [Erceg et al. 2001]). The fixed rays within a 
cluster share the same amplitude and phase, and their Doppler spectrum is a Dirac impulse at f = 0 Hz.  

To determine the power of the coherent and scattered rays, we fix Nc = Ns = N. The nth cluster is associated with 
a temporal K-factor Kn [dB]. The power in [dB] of each scattered ray is then given by 

Pn – 10 log10(N) - Kn 

 

while the power of each coherent ray is then given by  

Pn – 20 log10(n) 

All coherent rays within a given cluster are then ascribed equal amplitude (according to the above power) and 
equal phase, this phase being randomly distributed between clusters over [0, 2π].  

The cluster K-factor is a lognormally distributed variable whose variance is equal to 8 dB and whose mean 
nK is computed as follows.  

a) in the absence of a LOS: 

• for indoor scenarios 

[ ] [ ]nsKdBK nn βτ−= 0  
• for outdoor scenarios 

[ ] nn KdBK βτ−= 0  
where τn [ns] is the average cluster delay. The values of K0 and β are given in Table 3 [Oestges et al. 2007, 
Oestges et al. 2006, Oestges et al. 2005, Ahumada et al. 2005, Erceg et al., 2004]. 
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b) if a LOS is present (both for indoor and outdoor cases), the mean K-factor of the LOS cluster is given by 
[ ]dBK LOS .  

[ ] LOSKdBK =1  

The other clusters have a mean K-factor as given by the above relationships. The values of [ ]dBK LOS  are given 
in Table 3 [Oestges et al. 2007, Oestges et al. 2006, Oestges et al. 2005, Ahumada et al. 2005, Erceg et al., 
2004]. 

c) in bad urban scenarios (outdoor microcells and macrocells), the far scatterer clusters are given a specific 
mean K-factor Kfar [dB] 

[ ] farn KdBK =  

The values of [ ]dBK far  are given in Table 3 [Ahumada et al. 2005]. 

d) for outdoor scenarios, the above formulas are valid for a TX-RX range d [m] of 200 m and a UE antenna 
height h [m] of 3 m. For alternative ranges and UE antenna heights, all mean K-factors above are modified as 
follows [Erceg et al. 2001]: 

[ ] [ ] [ ] )3(log6.4)200(log5)3;200(),( 1010 mhmdmhmdKdBhdK nn +−===  
ADDITION IN PARAMETER TABLES: ELEVATION 

 

For all environments, an elevation spectrum is defined, with a deterministic angular spread. Only the elevation 
spread of the NLOS scenario is given. The elevation spread for the diffuse components in LOS is the same; the 
presence of the LOS component reduces the elevation spread in an implicit manner 

* A1 Indoor:  
BS: Laplacian angular spectrum. Angular spread: 11 degrees. Source [Winner 2007] 
MS: Laplacian angular spectrum: Angular spread 13 degrees. Source [Winner 2007] 
* B1 Microcell:  
BS: Laplacian angular spectrum. Angular spread: 5 +35*(h_roof-h_BS)/h_roof degrees. Linear interpolation 
between  [Toeltsch et al. 2002] (for h_BS=h_roof) and [Laitinen et al.] (for h_BS very small). 
MS: Uniform angular spectrum between 0 and 60 degrees [Kalliola et al. 2003], [Kuchar 2000], [Medbo et al. 
2005] 
* B2  bad microcell 
same as B1 
* B4: outdoor-to-indoor 
BS: same as B! 
MS: Laplacian angular spectrum. Angular spread: 7 degrees [Kalliola et al. 2002].  
* C1 suburban:  
same as D1 
* C2 urban 
BS: Laplacian angular spectrum: Angular spread: 0.5 degrees [Asplund et al. 2006] 
MS: uniform angular spectrum between 0 and 60 degrees [Kuchar et al. 2000] 
* C3 bad macrocell urban:  
same as C2 
* D1 Highway (rural):  
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BS: same as BS in macrocell urban 
MS: Laplacian angular spectrum, mean 6 degrees, angular spread 8 degrees [Kalliola et al. 2002]  
* D2: high-speed 
for both BS and MS, we use the values of the MS in D1 

 

 

MODIFICATION OF RICE FACTOR 

 

The Rice factor is modeled as a lognormally distributed random variable. It has a mean as suggested in Table 3, 
and a standard deviation of 6 dB [Asplund et al. 2006]. 
 

PROBABILITIES OF LINE-OF-SIGHT 
 
The probabilities for the LOS are given by the following table: 
 

[Winner 2007] 
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C2 and C3:  d_CO=500m [Asplund et 
al. 2006] 
B2: as for B1 
 

MODIFICATION OF TEMPORAL RICE FACTOR 

 

The Rice factor for stationary TX-RX is modelled as a lognormally distributed random variable, whose mean is 
computed based on the following values of K0, β, Kfar, and KLOS (see Table 3-next page) 

 

Clustered Delay Line model 

 

Scenario A1: LOS Clustered delay line model, indoor environment. 

Cluster 
# Delay [ns] Power [dB] 

AoD 
[º] 

AoA 
[º] 

Ray power 
[dB] 

Temporal 
K-factor 

[dB] 

1 0 0.0 0 0 
-

0.08*

-
30.2*

* 30 
2 20 -25.3 -160 164 -38.3 29.80 

3 35 40 45 
-

15.7 
-

17.9 
-

19.7 -113 -116 -25.7 29.60 
4 45 -21.0 -146 149 -34.0 29.55 
5 45 -19.4 140 143 -32.4 29.55 
6 90 -23.3 153 157 -36.3 29.10 

7 110 115 120 
-

18.8 
-

21.0 
-

22.7 148 151 -28.8 28.85 
8 155 -25.2 -159 163 -38.2 28.45 
9 190 -21.6 148 151 -34.7 28.1 
10 245 -19.1 -139 -142 -32.1 27.55 
11 255 -27.9 -168 -172 -40.9 27.45 
12 320 -30.5 176 -180 -43.5 26.80 
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 =
 5

º  
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SA

 =
 5

º  
 

* Power of dominant ray, 
** Power of each other ray 

Scenario A1 NLOS Clustered delay line model, indoor environment. 

Cluste
r # Delay [ns] Power [dB] 

AoD 
[º] 

AoA 
[º] 

Ray 
power 
[dB] 

Temporal 
K-factor  

[dB] 

1 0 5 10 
-

3.0 
-

5.2
-

7.0 0 0 -13.0 20.0 
2 5 -4.0 59 -55 -17.0 19.95 C

lu
st

er
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SD
 =
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º  
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º  
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3 20 -4.7 -64 -59 -17.7 19.8 
4 25 -9.0 89 -82 -22.0 19.75 
5 30 -8.0 83 -77 -21.0 19.70 

6 30 35 40 
-

4.0 
-

6.2
-

8.0 -67 62 -14.0 19.65 
7 35 -1.1 32 29 -14.2 19.65 
8 45 -5.2 -67 62 -18.2 19.55 
9 55 -9.5 -91 -84 -22.5 19.45 
10 65 -7.9 -83 77 -20.9 19.35 
11 75 -6.8 -77 -71 -19.8 19.25 
12 90 -14.8 -113 105 -27.8 19.10 
13 110 -12.8 -106 98 -25.8 18.90 
14 140 -14.1 111 -103 -27.2 18.60 
15 210 -26.7 -152 141 -39.7 17.90 
16 250 -32.5 -168 -156 -45.5 17.5 

 

Scenario B1: NLOS Clustered delay line model.  

Cluste
r # Delay [ns] Power [dB] 

AoD 
[º] 

AoA 
[º] 

Ray 
power 
[dB] 

Temporal 
K-factor 

[dB] 
1 0 -1.0 8 -20 -14.0 21 
2 90 95 100 -3.0 -5.2 -7.0 0 0 -13.0 20.05 
3 100 105 110 -3.9 -6.1 -7.9 -24 57 -13.9 19.95 
4 115 -8.1 -24 -55 -21.1 19.85 
5 230 -8.6 -24 57 -21.6 18.7 
6 240 -11.7 29 67 -24.7 18.6 
7 245 -12.0 29 -68 -25.0 18.55 
8 285 -12.9 30 70 -25.9 18.15 
9 390 -19.6 -37 -86 -32.6 17.1 
10 430 -23.9 41 -95 -36.9 16.7 
11 460 -22.1 -39 -92 -35.1 16.4 
12 505 -25.6 -42 -99 -38.6 15.95 
13 515 -23.3 -40 94 -36.4 15.85 
14 595 -32.2 47 111 -45.2 15.05 
15 600 -31.7 47 110 -44.7 15.00 
16 615 -29.9 46 -107 -42.9 14.85 

C
lu

st
er
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SD

 =
10

º  
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 =
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Scenario B4:  NLOS Clustered delay line model, outdoor to indoor environment 

Cluster # Delay [ns] Power [dB] 
AoD 
[º] 

AoA 
[º] 

Ray 
power 
[dB] 

Temporal 
K-factor 

[dB] 
1 0 -7.7 29 102 -20.8 16 
2 10 15 20 -3.0 -5.2 -7.0 0 0 -13.0 15.85 
3 20 -3.7 20 70 -16.7 16 
4 35 -3.0 -18 -64 -16.0 15.65 C

lu
st

er
 A

SD
 =

 5
º  

 

C
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º  
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5 35 -3.0 18 -63 -16.0 15.65 
6 50 -3.7 20 70 -16.7 15.5 
7 55 60 65 -5.4 -7.6 -9.4 29 100 -15.4 15.4 
8 140 -5.3 24 84 -18.3 14.6 
9 175 -7.6 29 100 -20.6 14.25 
10 190 -4.3 -21 76 -17.3 14.1 
11 220 -12.0 36 -126 -25.0 13.8 
12 585 -20.0 46 163 -33.0 10.15 

 

Scenario C1: LOS Clustered delay line model, suburban environment. 

Cluster 
# Delay [ns] Power [dB] 

AoD 
[º] 

AoA 
[º] 

Ray power 
[dB] 

1 0 5 10 0.0 
-

25.3
-

27.1 0 0 -0.02*
-

33.1** 
2 85 -21.6 -29 -144 -34.7 
3 135 -26.3 -32 -159 -39.3 
4 135 -25.1 -31 155 -38.1 
5 170 -25.4 31 156 -38.4 
6 190 -22.0 29 -146 -35.0 
7 275 -29.2 -33 168 -42.2 

8 290 295 300 
-

24.3 
-

26.5
-

28.2 35 -176 -34.3 
9 290 -23.2 -30 149 -36.2 
10 410 -32.2 35 -176 -45.2 
11 445 -26.5 -32 -159 -39.5 
12 500 -32.1 35 -176 -45.1 
13 620 -28.5 33 -165 -41.5 
14 655 -30.5 34 -171 -43.5 
15 960 -32.6 35 177 -45.6 

C
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 =
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º  
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º  
 

* Power of dominant ray, 
** Power of each other ray 

Clustered delay-line model for Scenario C1 NLOS 

Cluste
r # Delay [ns] Power [dB] 

AoD 
[º] 

AoA 
[º] 

Ray power 
[dB] 

1 0 5 10 
-

3.0 
-

5.2 -7.0 0 0 -13.0 
2 25 -7.5 13 -71 -20.5 
3 35 -10.5 -15 -84 -23.5 
4 35 -3.2 -8 46 -16.2 

5 45 50 55 
-

6.1 
-

8.3
-

10.1 12 -66 -16.1 
6 65 -14.0 -17 -97 -27.0 
7 65 -6.4 12 -66 -19.4 
8 75 -3.1 -8 -46 -16.1 
9 145 -4.6 -10 -56 -17.6 
10 160 -8.0 -13 73 -21.0 

C
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st
er

 A
SD

 =
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º  
 

C
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st
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 =
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0º
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11 195 -7.2 12 70 -20.2 
12 200 -3.1 8 -46 -16.1 
13 205 -9.5 14 -80 -22.5 
14 770 -22.4 22 123 -35.4 

 
Scenario C2: NLOS clustered delay line model. 

 

Cluster # Delay [ns] Power [dB] 
AoD 

[º] 
AoA 
[º] 

Ray power 
[dB] 

1 0 -6.4 11 61 -19.5 
2 60 -3.4 -8 44 -16.4 
3 75 -2.0 -6 -34 -15.0 
4 145 150 155 -3.0 -5.2 -7.0 0 0 -13.0 
5 150 -1.9 6 33 -14.9 
6 190 -3.4 8 -44 -16.4 
7 220 225 230 -3.4 -5.6 -7.4 -12 -67 -13.4 
8 335 -4.6 -9 52 -17.7 
9 370 -7.8 -12 -67 -20.8 

10 430 -7.8 -12 -67 -20.8 
11 510 -9.3 13 -73 -22.3 
12 685 -12.0 15 -83 -25.0 
13 725 -8.5 -12 -70 -21.5 
14 735 -13.2 -15 87 -26.2 
15 800 -11.2 -14 80 -24.2 
16 960 -20.8 19 109 -33.8 
17 1020 -14.5 -16 91 -27.5 
18 1100 -11.7 15 -82 -24.7 
19 1210 -17.2 18 99 -30.2 
20 1845 -16.7 17 98 -29.7 
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