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MIMO systems

• Multiple antenna elements at transmitter and receiver
• Hottest topic in wireless communications
• Use for

– diversity: single data stream with high quality
– spatial multiplexing: multiple parallel data streams

• History:
– transmit diversity invented in early 1990s (Wittneben, Winters, 

Lo); space-time codes (Alamouti, Tarokh)
– spatial multiplexing: Winters (1987), Foschini, Telatar, Paulraj, 

Raleigh and Cioffi (mid 1990s)



Antenna Selection

• Additional costs for MIMO
1. more antenna elements (cheap)
2. more signal processing (Moore’s law)
3. one RF chain for each antenna element

• Basic idea of antenna selection: 
– have many antenna elements, but select only best for 

downconversion and processing
– only at one link end: cost reductions might be more important at

one link end (MS) than the other

• Hybrid antenna selection: select best L out of available N
antenna elements, use those for processing



System Model
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• Received vector

– n: AWGN vector (Nr x 1)
– H: Channel matrix (Nr x Nt)
– v: Transmit weight vector (Nr x 1)

• Kronecker channel model
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Antenna Selection for Diversity
Weight selection if all antenna elements are used
• Write channel matrix as
• Excite channel with Vi, receive with Wi

H

• Received power is λi
2

Antenna and weight selection for H-S/MRT
• Create submatrices by striking rows
• Compute maximum singular value for this submatrix
• Search submatrix that gives largest max. singular val. 
• Use singular values associated with selected 

submatrix as antenna weights
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Bounds for the SNR distribution (I)

• Upper and lower bounds

• Determine

where γ(i) are ordered SNRs with distribution
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Bounds for the SNR distribution (II)

• Characteristic function:

• Analytical evaluation: recursive algorithm
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HS-MRT vs. MRT – Diversity Case
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Antenna Selection for Space-time Codes

• Knowledge at transmitter only about statistics of 
fading

• Performance:
– full diversity order
– loss of coding gain

• In correlated systems:
– select antennas so that determinants of correlation 

matrices at TX and RX are maximized



Antenna Selection for Spatial Multiplexing

Capacity for full-complexity system

Antenna selection for H-S/MRT
• Create submatrices by striking rows
• Compute capacity according to Foschini equation
• Search the submatrix that gives largest capacity
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Capacity with RX antenna selection

L=2 L=3
L=8cd

f (
C

)

10 20 30

L=2 L=3
L=8

capacity C [bits/s/Hz]
10 20 30

0

0.5

1

3 transmit antennas, 20dB SNR



Contents

• System model
• Performance analysis
• Antenna selection algorithms
• Effect of nonidealities
• RF preprocessing
• Results in measured channels
• Hardware aspects
• Summary and conclusions



Antenna Selection Algorithms

• Truly optimum selection:
– Exhaustive search
– Effort proportional to 

• Approximate methods:
– Power-based selection: works well for diversity antennas, but not 

for spatial multiplexing
– Selection by genetic algorithms
– Minimize mutual information between antenna elements
– Gorokov’s method
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Minimization of mutual information
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Channel Estimation Error - Diversity
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Channel Correlation - Diversity
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Key properties of antenna selection

• Number of spatial streams is limited by number of 
RF chains

• Diversity order is determined by number of 
antenna elements

• Beamforming gain is limited by number of RF 
chains
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Principle
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• Beam selection Vs Antenna Selection
• Can be implemented using variable phase-shifters
• In case M is of size L x Nr, selection switch/algorithm is not required



RF Pre-processing Solutions

• Channel-independent solution
– Fixed matrix (FFT Butler matrix)

• Time-variant solution 
– Elements of pre-processing matrix tuned to 

instantaneous channel state

• Time-invariant solution
– Elements of pre-processing matrix based only on 

channel-statistics

– Can be implemented with or without selection 



Channel-independent solution

• Transformation matrix is DFT matrix

• Transforms from antenna space to beamspace
• Each output of DFT has full beamforming gain N
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Time-variant solution (instantaneous CSI)

• For diversity:
– Achievable performance: same as with full-complexity 

CSI
– Phase-shifter only solution: optimum performance with 

2 RF chains
• Frequent channel sounding required



Time-invariant solution (average CSI)

Diversity case; only preprocessing (no selection)
Signal after RF pre-processing

Maximize average output SNR 
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Optimum RF and Baseband Solution
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• Perform PCA on λ1u1

• Extension of principal component combining for a single antenna 
correlated multipath receiver [Alouini, VTC2000]



Phase-Only Implementation

• Design of variable phase-shifters feasible

• Complex elements of M = [mij] can have arbitrary 
amplitude and phase

Algorithm
• Retain phase

• Replace amplitude of mij with a switch aij = 0/1

• Switch state chosen to maximize correlation between 
rows of M and its phase-only approximation

• Complexity: O(L log(L))



RF Pre-Processing with Selection Switch

– Difficult to handle analytically 
– SL that depends on instantaneous channel state

• Tractable lower bound: Swap max and expectation (EH)
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Solution that Improves Lower Bound

• Given SL, problem is similar to the LxNr case
– Specifies only L columns of M
– Remaining (Nr - L) columns must be orthogonal to 

these L columns
• Given SL, fix corresponding L columns
• Subsequent manipulations should not deteriorate 

previously considered selections
• Successive improvement of lower bound by fixing 

remaining columns 

[ ]
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Beam Patterns
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• TI adapts to mean AoA and angle spread (unlike FFT)
• Adapts to presence of multiple clusters



Comparison: Receivers with L demodulators
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Effect of Spatial Correlation
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Setup of measurement campaign

• Measure channel for “Personal Area Networks”
• Use access point, PC, and handheld



Sitemap and measurement setup
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Diversity gain



Impact of antenna configurations
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Hardware Aspects

• Attenuation of switches
– either decrease the effective SNR, 
– or LNA has to be before switch→requires more LNAs

• Switching time: has to be much smaller than duration of 
training sequence

• Accuracy of switch: transfer function has to be same from 
each input to each output port

• MEMS switches: have low insertion loss (0.1dB), but large 
switching time (5 microsec)

• Solid-state switches: high insertion loss (>1 dB), but short 
switching times (100 ns)



Phase Quantization & Calibration Errors
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• 3-bit phase quantization (steps of 450): capacity within 0.1 bits/sec/Hz
• 2-bit phase quantization (steps of 900): capacity within 0.3 bits/sec/Hz
• Spatial diversity: 1 dB loss in mean SNR observed



Insertion Loss
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• 2 dB loss: TI-Ph capacity same as ideal FFT selection
• 5 dB loss: TI-Ph capacity same as conventional antenna selection



Summary and Conclusions

• Antenna selection retains the diversity degree, but SNR penalty 
• For spatial multiplexing, comparable capacity if Lr≥Nt
• Optimum selection algorithms have complexity N!/(N-L)!; however, 

fast, good selection algorithms exist 
• For low-rank channels, transmit antenna selection can increase 

capacity
• Channel estimation errors do not decrease capacity significantly
• Frequency selectivity reduces effectiveness of antenna selection
• RF preprocessing greatly improves performance, especially in 

correlated channels
• Covariance-based preprocessing especially suitable for frequency-

selective channels
• Switches with low attenuation required both for TX and RX
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