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1.0 Purpose 
Various expressions for the expected value of received bit information rate (RBIR) are provided. 

2.0 Introduction 
One of the methods used for the PHY abstraction for system level simulations is based on the received bit 
information rate (RBIR) [1]. A new formulation based on the RBIR is proposed in [2] to abstract the 
performance of the maximum likelihood detector in the case of the Rate 2 spatial multiplexing (also referred to 
as Matrix B for either vertical or horizontal encoding).  

 

Given a received signal,  

  (1) nY X U= +
 

where nX  is drawn from a QAM symbol constellation of size N, and U  is the noise plus interference, then it is 
shown in [2] that the RIBR is given as 
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where  is the log-likelihood ration (LLR) of the n-th symbol and nLLR ( )np LLR  is the probability density 
function of (PDF) . nLLR

Evaluating the integral in Equation (2) is cumbersome. One approach which is followed in [2] uses look up 
tables in the evaluation of the RBIR. While the look-table approach works (as shown in [2]), several 
alternatives are given here that might be computationally simpler.  

3.0 Evaluation Methods 
In order to evaluate the integral in Equation (2) it is useful to note that this integral is the expected value of a 
function of a random variable, i.e.  
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where 
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Thus, computing the RBIR reduces to the evaluation of the expression Equation (4).  

 

3.1 Jensen’s Inequality 
We now state Jensen’s inequality (without proof). 

 

If g is a convex function of a random variable X, then  

 ( ) [ ]( )E g X g E X≥⎡ ⎤⎣ ⎦  (5) 
 

If g is a concave function of a random variable X, then  

 ( ) [ ]( )E g X g E X≤⎡ ⎤⎣ ⎦  (6) 
 

It is easy to show that the function g as defined in Equation (4) is concave, thus using Jensen’s inequality as 
shown in Equation (6), the integral in Equation (4) can be upper-bounded by 
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3.2  Using Taylor’s Series 
In the previous section we considered a bound in the evaluation of Equation (4), in this section a simple 
derivation for an approximation is given. 

 

The function  may be expanded in terms of a Taylor’s series ( )g X [3], so that 
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where [ ]E Xμ = , ( ) ( )kg X  is the k-th derivative1 of ( )g X  and ( )kR X  is a remainder term that vanishes as k 

get large. Taking the expectation of both side of Equation (8),  ignoring ( )kR X , and keeping only the term up 
to the second derivative, we get 

                                                 
1 Assuming that the k-th derivative exists.  
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Thus, the integral in Equation (4) becomes, 
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which can be re-written as 
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where  is the natural logarithm of 2. ( )ln 2

 

3.3  Using Differences 
In the evaluation of Equation (9) differentiation of the function ( )g X  is used, instead we can expand ( )g X  in 
terms of central differences (Stirling formula), then take the expectation and ignoring terms beyond the second 
order, yields [4] 
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The approximation using difference instead of derivates is both easier and might be more accurate. The 
difference parameter h can now be selected to yield good accuracy for the approximation. Choosing 3h σ=  is 
shown to give good accuracy, and in fact is exact for fifth degree polynomials and normally distributed X [5]. 
In this case, ( )E g X⎡⎣ ⎤⎦  becomes 
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Thus, 
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