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I. Introduction 
Recently, multi-input multi-output (MIMO) systems through deploying multiple antennae at the 

transmitter and receiver now become a key technique for realizing various performance merits in wireless 
communication, e.g., spatial multiplexing gains via the V-BLAST architecture and diversity advantages based 
on space-time block encoding [1]. One important system configuration capable of achieving high-rate & high-
reliability communication is to simultaneously transmit multiple groups of orthogonal space-time block coded 
(STBC) signals [3], [4], [5]. The double space-time transmit diversity (D-STTD) system [6], [7], which contains 
two co-channel Alamouti STBC streams, is the building block for such system category; it also serves as a 
transmit diversity mechanism for IEEE 802.16-2004 [8].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. D-STTD transceiver structure with power loading strategy 
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While the multiplexing of multi-group STBC signals increases spectral efficiency, the induced co-channel 
interference then becomes the main detrimental factor dominating the overall system performance. Receiver 
design for mitigating co-channel STBC interferes, also capable of relieving algorithm complexity against the 
joint maximum-likelihood decoding, has recently drawn much attention [4], [7], [6], [13], [14]. For D-STTD 
systems, a popular solution is the QR-based successive interference cancellation scheme (SIC) [6], [7]. In [6] 
the decomposed channel matrix component is shown to exhibit a certain appealing structure which can further 
reduce computation; in [7] bit-error-rate analysis is investigated. It is well-known that through appropriate 
signal power loading the performance of the QR-SIC receiver can be improved [9], [10]. In this contribution, 
we propose a power allocation scheme for MMSE-SIC based D-STTD signal detection. In the proposed scheme 
(see Fig. 1) the transmit power is allocated so that all the four signal components are subject to an equal signal-
to-interference- plus-noise (SINR) ratio. The main advantages of such an equal-SINR criterion are twofold. 
First of all, it can strike an optimal balance between channel capacity and the error-rate performance [10], [11]. 
Second, by exploiting a distinct channel matrix structure we proposed a closed-form expression of the power 
loading factors. Simulation results demonstrate the effectiveness of the proposed scheme: it outperforms most 
of the existing detecting schemes devised for the D-STTD system. 

The rest of this contribution is organized as follows. The ensuing section describes the system model used 
and an algorithm for performance comparison. In Section III, we provide some numerical performance of the 
algorithms. Then, some concluding remarks are given in Section IV. Finally, proposed sections/subsections in 
the table of content (ToC) for IEEE 802.16m SDD are described in the last section. 

 

II. System Model and Algorithm Description 

A. D-STTD System Model 

The signal model of D-STTD transmission can be expressed as [6] (see Fig.1) 
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where iy , is , and ip  are, respectively, the ith received data sample, the ith source symbol and the associated 
power allocation factor, 4∈v C  is the complex Gaussian noise vector with zero mean and 2H

vE σ=vv I , and 
the channel matrix H is defined by 

                            4 4

2 2 2

2 2 2 2 2-

1,1 1,2 1,3 1,4

* * * *
1,2 1,1 1,4 1,3

2,3 2,4,1 ,

* * * *
, ,1 ,4 ,3

:

h h h h

h h h h

h h h h

h h h h

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

− −
= ∈H C ,                             (2.2) 

in which ijh  denoting the channel gain with respect to jth transmit antenna to ith receive antenna. Let 
=H QR  be a QR decomposition of the channel matrix. Multiplying the signal model (2.1) from the left by 

HQ  we have [12] 

1 2

2 2
: H r

r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= = + = +
I R

z Q y RPs Qv Ps v
0 I

,                          (2.3) 



 IEEE C802.16m-07/200 
 

    4
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We note that, for the upper triangular factor R  in (2.3), the diagonal entries assume two distinct levels, 
whereas the upper off diagonal component R  is essentially an Alamouti block [12]; such an appealing 
property will be exploited for power loading factor design. 

B. Algorithm Description 

The MMSE OSIC receiver detects received data symbols by multiplying a linear weight vector for each 
stage base on a MMSE criterion. At certain stage j, the detection algorithm of the OSIC based MMSE 
receiver can be summarized as follows [16]:  

1). Ordering: Select the best substream n from all of the undetected ones in the MMSE sense: 
11 H

n n n njpε −= − r R r , where nε  is the MSE value corresponding to nth symbol; rn denotes the nth column 

associated with the upper triangular channel matrix R  in (2.3). 2 2

1

j
H H

vj i i i
i

p σ
=

= − +∑R RP R r r I  is the 

correlation matrix of the received vector after deleting the corresponding vectors. 

2). Weight calculation: Determine the weight 4 1
n

×∈w  of the nth substream in jth stage, and can be given 
by 1

n n njp −=w R r . 

3). Extraction: Extract the nth substream: H
n n jy = w z . 

4). Detection: The estimated transmitted symbol n̂s  can be detected by yn. 

5). Interference cancellation: Remove the contribution of the nth substream n̂s  from the received signal 

1 ˆn njj s+ = −z z r , where z0=z. 

In particular, the power loading matrix P can be calculated by the following steps.  

1). To attain equal MSE, the channel structure suggests that the power loading factors should be selected so 
that 1 2p p=  and 3 4p p= . As a result, only p1 and p3 need to be calculated. 
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3). 1 2 32
TPp p p= = − . Hence, { }1/2 1/2

1 4, ,diag p p=P  is determined.  

By the detection algorithm of the OSIC MMSE detector described above (procedure 1)~5) ), the estimated 
transmitted symbols using the D-STTD scheme can be decided. It is noteworthy that if p1 is determined, p3 can 
thus be determined and so do p2 and p4. As a result, only one parameter is needed to feedback from MS to BS to 
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allocate the power in FDD system. 

 

III. Simulation Result and Discussion 

We consider a D-STTD system over a quasi-static channel environment; the channel gains are assumed to 
be zero-mean complex Gaussian with unit variance, and the source symbols are drawn from QPSK constellation. 
Also we assume that perfect channel knowledge is available at both transmitter and receiver. Figure 2 compares 
the bit-error-rate (BER) performances of the proposed scheme with the following receivers: linear ZF and 
MMSE equalizers, the Naguib’s parallel interference cancellation scheme [13], the Stamoulis’ group decoupled 
detector [14], the MMSE V-BLAST detector [1], the QR-based SIC with minimal BER power loading [9]. 
From the figure we can see that SIC based solutions can outperform Naguib’s and Stamoulis’ methods; this has 
been observed in [2], and is mainly due to the fact that SIC receivers tend to afford a layer-wise increase in the 
diversity gains. Among the SIC based solutions, the proposed detector with equal SINR power allocation is 
seen to yield the best performance. 
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Figure 2. BER performance comparison 

 

IV. Conclusion  
A power loading scheme for MMSE OSIC receiver in the D-STTD system, which equalizes the SINR of 

each symbols with MMSE-OSIC receiver, is described and discussed in this contribution. Simulation results 
show that the D-STTD system using the proposed power loading strategy provides better SNR gain than the 
system using the power allocation used in ZF-OSIC and the MMSE-SIC without power loading strategy. 
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V. Proposed Sections/Subsections in the Table of Content (ToC) 
This contribution is to present a scheme of STC using closed-loop power allocation and show that 

significant performance improvement can be achieved with this scheme. According to IEEE 802.16 documents, 
current system does not support the function of closed-loop power allocation for STC with two or above 
independent transmit data streams. This may degrade the system performance a lot if the transmission power is 
not adaptive to current channel status even with STC. It is suggested to include this functionality in IEEE 
802.16m system. With closed-loop power allocation, the performance (BER) of STC with coding rate of 2 or 
above can be further improved by efficiently allocating transmission power over space and time domains. 
Required modifications to current system and proposed sections/subsections in ToC are shown as follows. 

Proposed sections/subsections in ToC: 
---------------------------------------------------------Start of the Text-------------------------------------------------------- 

[Adopt the following text in the ToC of P802.16m System Description Document (SDD)] 

 

x.y  Space-time coding (STC) 

x.y.z  STC using closed-loop power allocation 

[To support closed-loop power allocation, it is required to insert one functional block of power allocation 
immediately before STC encoder at the transmitter side and one functional block of power allocation 
coefficients estimation at the receiver side. It also requires a reliable feedback channel from receiver to 
transmitter. Therefore, the trade-off here is the system complexity and uplink bandwidth. Fig. 1 illustrates 
an example of the system architecture. However, the antenna combination is not limited to 4(Tx)x2(Rx). The 
only condition to support this scheme is that at least two antennas at receiver and four transmit antennas 
have to be applied in the system.] 

 

---------------------------------------------------------End of the Text-------------------------------------------------------- 
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