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Self-organizing Fractional Frequency Reuse for 802.16m Systems
Kim Olszewski
ZTE USA, Inc.

1 Introduction

There are four basic approaches for interference mitigation within OFDMA-based cellular networks. Specif-
ically, the following four approaches that can be combined and complement each other:

1. Interference randomization or averaging via subcarrier frequency hopping.

2. Interference avoidance by �xed or adaptive allocation of OFDMA frequency reuse patterns. OFDMA
systems are very �exible and can support a variety of �xed and adaptive methods for frequency reuse.

3. Interference estimation and cancellation via advanced signal processing techniques (e.g. successive
interference cancellation).

4. Interference mitigation by transmit and receive beamforming or precoding.

Fixed or adaptive fractional frequency reuse (FFR) provides a means to overcome interference especially
cell edge interference. OFDMA systems supporting fractional frequency reuse (FFR) for interference
mitigation divide frequency into several frequency partitions or subbands. In an FFR implementation
mobile stations (MSs) at a cell center are allowed to operate using all available OFDMA subchannels but
MSs at the cell edge are only allowed to use a fraction of the available OFDMA subchannels, that is a
frequency partition. This frequency partition is allocated in such a way that MSs in adjacent cells�edges
will simultaneously operate on di¤erent OFDMA frequency partitions. As a result cell-edge MSs have
suppressed inter-cell interference and MSs around the cell center have the full frequency band usage (see
Figure 1).

There are several approaches as how to schedule or distribute mobile stations to frequency partitions.
The simplest one consists of randomly picking frequency partitions from a set of available frequency par-
titions. For self-organized networks frequency partitioning should not involve inter-BS coordination as
is Section 20.1.1.2 of SDD. This contribution proposes baseline SDD text and describes an approach for
self-organized networks that encompasses spectrum pro�ling, spectrum opportunity learning and spectrum
opportunity management.

2 Proposed SDD Text

The proposed text below addresses FFR for self-organizing IEEE 802.16m networks. An approach for
supporting self-organizing FFR is described in the remaining sections of this contribution.

============================================================
18.x Self-organizing Fractional Frequency Reuse

For self-organizing fractional frequency reuse three basic functions are supported:

1. Radio environment monitoring and awareness via spectrum pro�ling

2. Radio environment learning
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3. Radio and/or network adaptation based on environment awareness and learning

These functions are divided between base stations and mobile stations: spectrum pro�ling by mobile
stations and spectrum opportunity learning and management by base stations.

18.x.1 Spectrum Pro�ling by Mobile Stations
Spectrum pro�ling is the process of characterizing spectrum usage in a set of frequency partitions and

maintaining an awareness of channel state and interference conditions within the frequency partitions.
Spectrum pro�le data may include the following:

1. Estimates of received signal-to-interference plus noise power ratios.

2. Estimates of interference plus noise power.

3. Estimates of received signal power.

4. Decision bits that indicate whether a frequency partition is favorable for MS radio operation at a
desired data rate.

For self-organizing FFR IEEE 802.16m mobile stations support spectrum pro�ling. A mobile station�s
serving BS speci�es the frequency partitions to pro�le and the speci�ed times instances or periodic time
intervals for the spectrum pro�ling. MSs transmit their measured spectrum pro�le data to their serving
BS using spectrum pro�le messages.

18.x.2 Spectrum Opportunity Learning and Management by Base Stations
Spectrum pro�ling only provides BSs information on the characteristics of a frequency partition (i.e.

channel propagation conditions, interference conditions, and noise levels).
A spectrum opportunity may be de�ned simply as a frequency partition that supports MS radio oper-

ation at a desired data rate.
Spectrum opportunity learning concerns the mapping of data from spectrum pro�ling to information

useful for FFR. Spectrum opportunity learning is based on spectrum pro�le messages from all of a BS�s
active MSs.

Spectrum opportunity learning is a BS-centric process for determining whether one or more candi-
date frequency partitions may be used for MS transmissions at a desired data rate. For FFR spectrum
opportunity learning is implemented independently by each BS, no inter-BS communications are required.

For spectrum opportunity learning BSs construct and maintain a Spectrum Opportunity Map (SOM) for
each frequency partition. Using spectrum pro�le messages BSs periodically update their SOMs. Entries in
the SOM may contain information computed or learned from a number of uplink spectrum pro�le messages
received over a time window.

Using their SOMs the BSs learn of spectrum opportunities and autonomously manage spectrum op-
portunities. For example, the SOM data and learned concepts may be used as input for scheduling MSs or
allocating frequency partitions to MSs. Speci�c learning algorithms to use on SOM input are implemen-
tation dependent.
============================================================

3 Frequency Partitions for FFR

� Let NFFT (a power of 2) denote the number of orthogonal subchannels associated with an OFDM
symbol. The frequency set associated with the OFDM symbol is de�ned as

F = ffkgNFFT�1k=0 = ffkgNFFT =2�1k=�NFFT =2 (1)
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Here fk denotes a subcarrier frequency. TheNFFT orthogonal subchannels are centered at the discrete
frequencies in F, each having a bandwidth of 1=NFFTTS where TS denotes the system sample period

� Set F contains the frequencies of all NFFT subchannel signals associated with an OFDM symbol.

� We de�ne a frequency or subband partitioning associated with an FFR implementation as

F = fF1; F2; :::; Frg (2)

where integer 1 � r � Nused and Nused < NFFT denotes the number of used subcarriers.

� Each frequency partition Fi in F consists of Ni contiguous or non-contiguos subcarrier frequencies
taken from F.

� Frequency partitions F1; F2; :::; Fr may be overlapping or independent (disjoint) meaning that the
equality Nused =

Pr
i=1Ni holds.

4 Overview of an FFR Technique for Self-Organizing Networks

� To better utilize spectrum 802.16m radios should operate opportunistically meaning they should be
able to monitor and identify bands of unused or under used spectrum and adapt their signals to use
this spectrum optimally.

� For self-organization 802.16m radios should be �exible, they should embody three fundamental char-
acteristics:

1. Radio environment awareness

2. Radio environment learning

3. Radio and/or network adaptation based on environment awareness and learning

� Two required steps for the proposed self-organizing fractional frequency reuse technique are as follows:

1. Spectrum Pro�ling by Mobile Stations

� Spectrum pro�ling may be de�ned as the process of characterizing spectrum usage in a
frequency partition F = fF1; F2; :::; Frg and maintaining an awareness of channel state and
interference conditions within F .

� In a spectrum pro�ling process MSs assess and characterize their spectrum situation at BS
speci�ed times instances or at periodic time intervals (e.g. P-SCH, midambles, etc).

�MS are best positioned to sense their local dynamic channel and interference conditions.
MSs provide this information to their serving BSs.

� Spectrum pro�ling data is gathered from a group of MSs spatially distributed within a net-
work. Spectrum opportunity learning mechanisms do better with somewhat global knowl-
edge of the RF environment.

2. Spectrum Opportunity Learning and Management by Base Stations

� Spectrum pro�ling only provides BSs information on the characteristics of a frequency
partition F (i.e. channel propagation conditions, interference conditions, and noise levels).
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Figure 1: Simple example of frequency reuse within a OFDMA cellular network. The example shows
three contiguous frequency partitions allocated to two non-sectorized cells. Sectorized cells will have more
frequency partitions.
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�A spectrum opportunity may be de�ned simply as a band or frequency partition Fi in F
favorable for MS radio operation at a desired data rate. A spectrum opportunity exists
if a radio can transmit using some combination of its operating parameters with minimal
interference to other MSs.

� Spectrum opportunity learning or identi�cation is the process of determining whether one
or more frequency partitions Fi in F may be used for MS transmissions at a desired data
rate. It concerns the mapping of MS and BS transmissions to frequency partitions Fi.

� Spectrum opportunity learning may be based on a combination of inputs that may include
spectrum pro�ling data, radio operating policies, and radio operating time and location.
Spectrum opportunity learning by a BS should include input from all of its MSs.

�Given inputs spectrum opportunity learning is realized independently by each BS. For
self-organizing networks no active negotiation between BSs via a distributed algorithm or
protocol is required.

�Given spectrum pro�ling data in the form of an uplink message from a served MS each BS
constructs and updates a Spectrum Opportunity Map (SOM). Entries in the SOM may be
derived from the collected spectrum pro�ling data of all MSs associated with a BS. Entries
in the SOM may contain information learned from a number of uplink messages for all MSs.
That is, the SOM is learned an updated based on messages collected over a time window.

� Spectrum opportunity management concerns spectrum opportunity coordination.
�Given BS commands derived from spectrum opportunity learning an MS may adapt its
operating frequency, transmit power, modulation, coding, network protocols, etc.

5 MS Spectrum Pro�ling

5.1 Overview of Spectrum Pro�ling

� A spectrum pro�ler allows networked 802.16m radios to achieve improved spectrum e¢ ciency by
means of embedded RF monitoring and measurements needed for radio adaptation to dynamic spec-
trum conditions. A spectrum pro�ler portrays a radio�s RF spectrum environment using physical
layer measurements such as the following:

1. Estimates of the received signal to interference plus noise power ratio PSINR

2. Estimates of interference plus noise power PIPN

3. Estimates of received signal power PS

4. Decision rule bits � that indicate whether a spectrum opportunity exist at a speci�ed false alarm
probability.

� A spectrum pro�ler�s measurements may be used as inputs for spectrum opportunity learning. A
spectrum pro�le provides detailed spectrum usage information that can be exploited for spectrum
e¢ ciency, spectrum planning, frequency hopset adaptation, and waveform adaptation.

� A spectrum pro�ler may provide these measurements for a programmable frequency partitioning such
as F = fF1; F2; :::; Frg. For each Fi in F channel conditions and interference/noise (narrowband,
wideband, impulsive and mixed) can be monitored and characterized by a spectrum pro�ler.

� A spectrum pro�ler may provide these measurements at periodic (e.g. superframe of frame-based)
or random time intervals and in accordance with a speci�ed search algorithm. The search algorithm
may change based on application needs.
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� A spectrum pro�ler may be used as a key component for the following adaptive radio applications:

� Link Data Rate Adaptation

�Transmit Power Control

�Noise/Interference Avoidance

� Interference Mitigation

�Channel Access Control

�E¢ cient Bandwidth Utilization

�Coexistence management with other radios and equipment

5.2 Signal Processing for Spectrum Pro�ling

Figure 2 shows a conceptual block diagram of a Spectrum Pro�ler. Referring to Figure 2 the components
are now described.
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Figure 2: Conceptual block diagram of a Spectrum Pro�ler

5.2.1 Power Spectral Density Estimator

� Let x denote a known wideband reference sequence such as a preamble or a midamble and y the
received channel-corrupted version of x. The length of the sequences is NFFT which equals a power
of two.

� Let TS denote sampling period and recall the OFDM symbol frequency set

F = ffkgNFFT�1k=0 = ffkgNFFT =2�1k=�NFFT =2 (3)

Discrete frequency

fk =
k

NFFTTS
=

2k

NFFT
fNF (4)

lies within the spectral band B = [0; fNF] where fNF = 1=2TS is the Nyquist frequency. Note that as
NFFT increases frequency resolution within B = [0; fNF] increases and when TS decreases bandwidth
B increases.
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Figure 3: A spectrogram computed by the Spectrum Pro�ler. A spectrogram is a frequency vs. time vs.
power display where the frequency is represented on y-axis and time on the x-axis. The power is expressed
by the color.
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� For each received y and fk in F the Power Spectral Density Estimator computes a PSD estimate

Syy(fk) =
TS
NFFT

�����
NFFT�1X
n=0

y[nTS ]e
�j 2�kn

NFFT

�����
2

(5)

=
TS
NFFT

jFFT (y)j2

� To improve the Power Spectral Density Estimator�s performance estimates Syy(fk) should be smoothed
or averaged. Let t > 0 denote the preamble or a midamble number, ~Syy[t] a smoothed estimate, and
Syy(fk; t) the PSD estimate computed from the tth preamble or a midamble. A simple exponentially
weighted smoothing algorithm such as the following may be easily implemented:

~Syy[t] = ~Syy[t� 1] + �
�
Syy(fk; t)� ~Syy[t� 1]

�
(6)

The parameter 0 � � � 1 controls the degree of smoothing. When � approaches 1 smoothing
increases and when � approaches 0 smoothing decreases.

� For each x and fk in F the Power Spectral Density Estimator computes the power spectral density
estimate Sxx(fk) using an FFT.

� Using Sxx(fk) and Syy(fk) the Power Spectral Density Estimator computes cross-power spectral
density estimate Sxy(fk):

5.2.2 MS-Coherence Estimator

� Given the PSD estimates

fSxx(fk)gNFFT =2�1k=�NFFT =2 , fSyy(fk)g
NFFT =2�1
k=�NFFT =2 and fSxy(fk)g

NFFT =2�1
k=�NFFT =2 (7)

the Magnitude-Squared (MS) Coherence Estimator computesn
jCxy(fk)j2

oNFFT =2�1
k=�NFFT =2

(8)

where

0 � jCxy(fk)j2 =
jSxy(fk)j2

Sxx(fk)Syy(fk)
� 1 (9)

denotes the magnitude-squared coherence estimate at discrete frequency fk.

� The MS-Coherence estimate jCxy(fk)j2 quanti�es the similarity or dependence between sequences x
and y.

� Time-domain cross-correlations also provide signal similarity measures but jCxy(fk)j2 may be more
useful because:

1. jCxy(fk)j2 provides similarity measures at discrete frequencies fk
2. jCxy(fk)j2 is independent of any time delay between signals x and y.
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5.2.3 SINR, IPN and Received Signal Power Estimators

� MS-coherence estimates are appropriate for spectrum-adaptive communications since they may pro-
vide both SINR and interference estimates.

� For each received signal y and each fk in F the SINR Estimator computes the ratio of received
signal-of-interest power to received interference-plus-noise power:

SSINR(fk) =
jCxy(fk)j2

1� jCxy(fk)j2
(10)

� For each received signal y and fk in F the IPN Power Spectral Density Estimator computes the PSD
of the received interference-plus-noise (IPN):

SIPN (fk) =
�
1� jCxy(fk)j2

�
Syy(fk) (11)

� The PSD estimate measured at the output is

Syy(fk) = Sss(fk) + SIPN (fk) (12)

= jH(fk)j2 Sxx(fk) + SIPN (fk)

� The received signal PSD estimate is then

Sss(fk) = Syy(fk)� SIPN (fk) (13)

� As de�ned above a frequency partitioning associated with an FFR implementation is

F = fF1; F2; :::; Frg (14)

where integer 1 � r � Nused and Nused < NFFT denotes the number of used subcarriers. Each
frequency partition Fi in F consists of Ni contiguous or non-contiguos subcarrier frequencies taken
from F.

� The SINR Power Estimator computes the received signal-of-interest to interference-plus-noise (IPN)
power ratio over an Fi in F from the summation

PSINR[Fi] =
1

Ni

X
k2Fi

SSINR(fk) (15)

� The IPN Power Estimator computes the received interference-plus-noise power over an Fi in F from
the summation

PIPN [Fi] =
1

Ni

X
k2Fi

SIPN (fk) (16)

� The Received Signal Power Estimator computes the received interference-plus-noise power over an
Fi in F from the summation

PS [Fi] =
1

Ni

X
k2Fi

Sss(fk) (17)
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5.3 Some Estimator Computation Notes

� Sequence x should designed so that Sxx(fk) is constant and non-zero for all fk. If Sxx(fk) is zero
jCxy(fk)j2 will be singular and corrupt subsequent signal processing operations.

� If x is known and constant Sxx(fk) can be computed o¤-line and stored in memory.

� Estimate Sxy(fk) can be computed e¢ ciently from Sxx(fk) and Syy(fk): Thus for each received frame
only Syy(fk) (which is required for OFDM systems) needs to be computed using Welch�s method.

� Performance of the spectrum pro�ler depends upon implementation factors:

�Receiver characteristics such as sensitivity

� Spectrum pro�le window size equal to N

�Average and peak values within the window

� Spectrum pro�ling scan rate

�Thresholds on discriminating interference/noise from signals

5.4 Spectrum Opportunity Detector

� For any discrete frequency fk in Fi the MS-Coherence estimate can be written as

jCxy(fk)j2 =
�2x

�2x + SIPN (fk)= jH(fk)j
2 (18)

where Sxx(fk) = �2x, H(fk) denotes the channel transfer function and SIPN (fk) the PSD of the
received interference-plus-noise (IPN).

� Note that MS-coherence estimates aggregate information on both channel quality and interference-
plus-noise power. As the ratio SIPN (fk)= jH(fk)j2 increases (decreases) jCxy(fk)j2 decreases (in-
creases). We can therefore use jCxy(fk)j2 as a measure to detect spectrum opportunities for each fk
in a received spectral band B = [0; fNF]. The MS-coherence estimate also simpli�es the mathematical
formulation of a signal detector implementation.

� The problem of detecting spectrum opportunities can be stated as a statistical hypothesis test with
null and alternative hypotheses H0 and H1. A spectral opportunity for each fk in Fi is detected
using the hypothesis test

H0 : jCxy(fk)j2 = 0 (Spectrum opportunity does not exist) (19)

H1 : jCxy(fk)j2 > 0 (Spectrum opportunity exists)

� Following table summarizes the possible decisions and errors:

Truth Decision Accept H1 Decision Reject H1
H0 Type I Decision Error Correct Decision
H1 Correct Decision Type II Decision Error

(20)
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5.4.1 Error Probabilities for Spectrum Opportunity Detection

� Let random variable T (fk) denote a test statistic at frequency fk in Fi and � a critical value for
T (fk). The probability of a Type I decision error (spectrum opportunity false alarm) is de�ned as

PFA = Pr fAccept H1jTruth H0g = Pr fT (fk) � � jTruth H0g (21)

The probability of a Type II Decision Error (missed spectrum opportunity detection) is de�ned as

PMD = Pr fAccept H0jTruth H1g = Pr fT (fk) < � jTruth H1g (22)

� The di¤erence 1� PMD is the probability of detecting a spectrum opportunity.

5.4.2 Test Statistic for Spectrum Opportunity Detection

� A design requirement for a Spectrum Opportunity Detector is to minimize the missed detection
probability PMD for a false alarm probability PFA as small as possible.

� To meet the design requirement a Spectrum Opportunity Detector may use the test statistic

T (fk) = (m� 1)
jCxy(fk)j2�

1� jCxy(fk)j2
� = (m� 1)SSINR(fk) (23)

5.4.3 Probability Distribution of the Test Statistic

� Under H0 test statistic T (fk) has an Fdistribution F1�PFA (2; 2(m� 1)) with 2 and 2(m� 1) degrees
of freedom. Probability PFA is chosen from the interval [0; 1]:

� Positive integer m > 0 denotes the number of signal segments used to compute jCxy(fk)j2 (e.g. when
computing jCxy(fk)j2 using Welch�s method m sections of a sequences x and y are used to compute
m periodograms that are averaged).

5.4.4 Decision Function for Spectrum Opportunity Detection

� The decision function for the Spectrum Opportunity Detector is de�ned as

�(fk) =

�
1 if T (fk) � � = F1�PFA (2; 2(m� 1))
0 otherwise

(24)

� Given a speci�ed false alarm probability of PFA the Spectrum Opportunity Detector rejects the null
hypothesis H0 at discrete frequency fk when �(fk) outputs a 1.

� Decisions �(fk) may be combined.. For example, using equal weighted decision combining (majority
voting) the Spectrum Opportunity Detector may uses the decision function

�[Fi] =

(
1
P
fk2Fi �(fk) >

l
Nii
2

m
0 otherwise

(25)

Other decision combining methods may also be used.
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5.4.5 Critical Value Computation

� Given a false alarm probability PFA and the number of signal segments used to compute jCxy(fk)j2
the inverse of the F distribution function F1�PFA (2; 2(m� 1)) can be used to compute critical value
� :

� Computations for a number of � values can be computed o¤-line and results stored in look-up tables
indexed by false alarm probabilities PFA:

6 BS Spectrum Opportunity Learning (SOL) and Management

6.1 Learning Algorithms

� Spectrum pro�ling only provides information on the characteristics of a channel or subchannel (i.e.
channel propagation conditions, interference conditions, and noise levels).

� Spectrum opportunity learning concerns the design of algorithms that convert information from
spectrum pro�ling to information useful for FFR.

� Learning algorithms may be used for tasks such as signal detection, identi�cation, classi�cation and
prediction (e.g. detection/identi�cation of interference or network tra¢ c patterns).

� Spectrum opportunity learning may be based on factors such as a 16m radio�s application (voice or
data transmission), its operating environment, its operational time and/or geographic location.

� Spectrum opportunity learning may occur at di¤erent levels and/or time periods:

1. It may learn based on every possible radio and network parameter that it observes or is given
by other elements within a network

2. It may learn based on only RF spectrum data that is observed by its Spectrum Pro�ler. Most
of the research work is currently focused on learning based on only obtained RF spectrum data.
Higher-layer (Layer 2 and 3) learning based on network data is also a research focus.

� Learning algorithms may be broadly categorized as supervised, unsupervised or reinforcement based:

� Supervised Learning Algorithm

� Learning data: (x;y) where x and y are sample sequences of input and output signals
associated with an unknown signal map or transfer function to be learned. Sequence x is
typically known.

� Main Usages: Signal prediction, system identi�cation, classi�cation
� Example Radio Usage Task: Channel transfer function estimation or prediction for radio
data rate and transmit power adjustments.

�Unsupervised Learning Algorithm

� Learning data: Sample sequence y of a signal of interest (e.g. an interference signal at some
frequency).

� Main Usages: Signal characterization, structure learning via clustering algorithms, pattern
recognition and classi�cation.

� Example Radio Usage Task: Dynamic histogram construction for estimating the probability
of interference occurring at a certain frequency, power, etc. in a MS�s spectral �eld of view.
BS may dynamically change an MS frequency or frequency hop algorithm based on input
of estimated probabilities.
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�A reinforcement learning algorithm is more complex and di¤ers from a supervised and unsuper-
vised learning algorithm in several ways. The main di¤erence is that a reinforcement learning
algorithm requires interaction with other radios within a network. Supervised and unsuper-
vised learning algorithms may work with or without interaction. Reinforcement learning is
performed based on positive/negative feedback messages from the other networked radios. Pos-
itive/negative feedback messages are sent to a learning radio in response to an action that it
executes (e.g. a power increase). The goal of reinforcement learning may be to learn a proce-
dure, plan, or policy: which radio action(s) to choose given the state of its external environment
(i.e. channel and/or network). A simple example is closed-loop power control.

� Learning algorithms may be used by a 16m radio in performing tasks such as signal, interference and
network tra¢ c pattern detection and classi�cation; discovering RF spectrum usage opportunities,
predicting their duration times and frequency usage patterns; situation assessment (e.g. the status
of nearest neighbors based on their RF emissions); concept formations based on channel and network
states; radio and network variable selections; and predictions (e.g. motion prediction of mobile radio,
channel state, interference, etc.).

� Radio learning may be accomplished in two basic ways: single-radio learning and multi-radio learning.

� Single-radio learning is performed by a 16m radio independently, data from other radios or network
elements are not used.

� Multi-radio learning occurs within a network and may implemented as multiplied, divided and inter-
active learning.

�For multiplied learning there are two or more learners, each of them learns independently of the
others. There may be interactions among the learners, but these interactions just provide data
which may be used in the other learners�learning processes. The individual learners may use
the same or a di¤erent learning algorithm.

�For divided learning a learning algorithm is divided among two or more learners. The division of
the learning algorithm is not a part of the learning process itself. The radios involved in divided
learning have a shared overall learning goal. The division may be according to functional aspects
of an algorithm, radio location, radio capabilities, etc. An individual learner involved in divided
learning may also act as specialist who is just responsible for a speci�c subset of activities that
form part of the overall learning process. Learner interaction is required for aggregating the
results of the learning activities.

� Interactive learning is a more dynamic activity that concerns the intermediate steps of the
learning process. Interaction is used for data exchange and for executing a cooperative search
for a solution to a learning task. Interaction is an essential part and ingredient of the learning
process.

6.2 Examples of SOL

� Dynamic histogram construction for estimating the probability of interference occurring at a speci�ed
frequency partition and/or power level. A 16m radio may dynamically adapt (e.g. a frequency hop
algorithm) based on this knowledge.

� The status of a nearby network or cell based on RF emissions of the users. A 16m radio protocol
may use this knowledge for its operation.
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� Selection of radio and/or network parameters based on learned RF spectrum usage patterns as a
function of time and location.

� Measurements provided by a Spectrum Pro�ler may be used to learn the following:

�For each frequency partition Fi in F power levels and average usage durations.

�For each frequency partition Fi in F average and peak values within a partition and ratios of
peak interference power to mean or RMS power.

� Interference duty cycles, interference tra¢ c patterns and spectrum usage patterns. For example,
in a lightly loaded network duty cycles may be slow.

�Thresholds for discriminating interference/noise from signals may be computed or learned.

� Interference and received signal power characterization via counting methods (e.g. peak count-
ing, level cross counting, range counting, from-to-counting, range-mean counting, and range
pair-range counting).

�Change-point detection is an area of statistical inference and signal processing that links together
control theory, estimation theory and hypothesis testing. Simply stated a change-point in an
observed random signal is de�ned as the moment in time when some probabilistic characteristics
of the signal change. Probabilistic changes in a random signal can be additive or multiplicative.
Additive changes imply changes in the mean of a random signal. Multiplicative changes result
when a random signal is transformed by a linear or nonlinear map resulting in spectral, variance
or correlation changes in the signal. The change-point detection problem is to detect a change-
point in a signal via a statistical hypothesis test, estimate an unknown parameter or parameters
of interest that the change-point depends on and to invoke a control or action based on the
change-point detected and the parameter estimation.

6.3 Spectrum Opportunity Maps

� For fractional frequency reuse each BS maintains a Spectrum Opportunity Map (SOM) for each
frequency partition Fi in F . The BS uses the data in its SOMs to manage spectrum opportunities;
the data is used as input for scheduling MSs and allocating frequency partitions. SOMs are useful
when multiple spectral opportunities are available. They help a BS choose a �good� spectrum
opportunity from a candidate set. They may help coordinate partition changing and switching.
Speci�c algorithms to use on SOM input are implementation dependent.

� During a spectrum pro�ling interval (e.g. P-SCH or preamble, midamble) each MS obtains spectrum
pro�ling data for one or more frequency partitions Fi in F . The MSs transmit this data to their
serving BS in an uplink spectrum pro�le message. An example of a spectrum pro�le message derived
from spectrum pro�ling data is as follows:

Message Fieldsz }| {
MS_ID
8 bits

Fi
2 bits

�[Fi]
1 bit

PSINR[Fi]
8 bits

PS [Fi]
8 bits

PIPN [Fi]
8 bits| {z }

Example Format of Spectrum Pro�ling Message

� Note that some of �elds may be transmitted via other types of uplink messages. For example, the
SINR estimate may be transmitted via another uplink fast feedback channel message.

� Given a spectrum pro�le message the serving BS updates its SOM. Entries in the SOM may be
computed and/or learned from spectrum pro�ling data collected from all MSs.
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� The following is an example of a Spectrum Opportunity Map for frequency partition Fi in F . A base
station should store and maintain one SOM for each Fi in F .

SOM for Frequency Partition Fi in F
MS_ID SOInd Time Prob AvgSigPower AvgIntPower AvgSINR
ID0 1 T0 P0 SP0 IP0 SINR0
ID1 0 T1 P1 SP1 IP1 SINR0
ID2 1 T2 P2 SP2 IP2 SINR2
...

...
...

...
...

...
...

IDM 1 TM PM SPM IPM SINRM

� The MS_ID column contains MS identi�ers IDi. MSs may be added or deleted from the SOM at
BS chosen time intervals.

� The SOInd column contains spectrum opportunity decisions �[Fi] as de�ned above. Recall that
�[Fi] indicates whether a spectrum opportunity in frequency partition Fi exists based on a speci�ed
detection or false alarm probability PFA. The BS may specify the false alarm probability PFA in a
prior downlink message. It may also be �xed or learned. These are implementation decisions. A
value of 1 indicates that the frequency partition Fi is candidate frequency partition for usage by
speci�c MS. A value of 0 indicates that no spectral opportunity exists in frequency partition Fi.

� The Time column contains entries Ti which denote the accumulative amount of time that a spectrum
opportunity has existed for an MS in frequency partition Fi. These values are easily obtained from
the run length of a sequence of SOInd values equal to one.

� The AvgSigPower column contains values SPi which represent the average received power of re-
ceived signal transmissions in frequency partition Fi. The average received signal power SPiis com-
puted from received signal power values PS [Fi].

� The AvgIntPower column contains the average interference powers IPi as observed by a MS in
frequency partition Fi. The average interference power is computed by averaging received values
PIPN [Fi].

� The AvgSINR column contains values SINR0 that represent the average SINR power as observed
by a MS in frequency partition Fi. The average power is computed from received values PSINR[Fi].

� The Prob column contains values P0 that denote the probability that a frequency partition Fi in F
provides a spectrum opportunity. Let Pi = Pr(Fi) denote the probability that a frequency partition
Fi in F provides a spectrum opportunity. Decisions �(Fi) may be used to generate estimates of Pr(Fi)
by averaging binary decision values �(Fi) over a window of time (e.g. a sequence of superframes or
frames). Choosing a window size for the moving average is important design parameter. The window
size can also be parametrized.

� Dynamic histogramming can be implemented by combining the Pr(Fi) values for each frequency
partition. More speci�cally, for the partition set F = fF1; F2; :::; Frg a plot of the values Pr(Fi);
i = 1; 2; : : : ; r, versus partition set index numbers will give the probability that each Fi in F provides
a spectrum opportunity for an MS. Probabilities Pr(Fi) and SOMs may also be used by networked
BSs or MSs as feature vectors for frequency usage pattern recognition algorithms.
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