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Correction to RBIR Link-to-System Mapping in 802.16m Evaluation Methodology  
Yoav Levinbook and Ramon Khalona 

NextWave Wireless 

  
1.   Purpose 
The purpose of this contribution is to document a change request necessary to correct an error in the mandatory 
Link-to-System Mapping method (RBIR), section 4 of [1]. 

 

2. Introduction 
Received Bit Information Rate (RBIR) has been chosen as the mandatory link-to-system mapping method in the 
16m EVM.   A fair amount of effort has been devoted to streamline the application of this method and to make 
it computationally efficient.  Unfortunately, some errors have been found and in this contribution we document 
the extent of the problem, its solution and a remedy to make a change in the EVM (see Section 5 below). 

 

3. RBIR Mapping for the Maximum-Likelihood MIMO Receiver 
Fix an OFDM symbol and a subcarrier at the output of the FFT, and let Y denote the received vector of 
dimension Nr.  

Then Y=HX+U, where H is the channel matrix, X is the transmitted symbol vector of dimension Nt, and U is a 
zero mean complex Gaussian noise vector of dimension Nr with covariance I2σ . 

Let Mi denote the constellation size of the ith stream (i.e., Mi = 4, 16, and 64 for QPSK, QAM16, and QAM64, 
respectively) and ix  denote the ith coordinate of X. In the SIMO case, we simply use M  to denote the 
constellation size. 

Given random variables z, w, and u, let ),( wzI  denote the mutual information of z and w and )|,( uwzI                    
denote the conditional mutual information of z and w given u.  

Define 
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According to the EVM document [1], the RBIR for MIMO Matrix B system is calculated from the quantities 
1RBIR  and 2RBIR  as follows: For a 2x2 system using MIMO Matrix B and horizontal encoding, the RBIR 

metric is computed individually for each stream by computing RBIR1 and RBIR2 for streams 1 and 2, 
respectively. For a 2x2 system using MIMO Matrix B and vertical encoding, RBIR is computed as a weighted 
sum of the individual RBIRs, i.e., 2211 RBIRpRBIRpRBIR += , where p1 and p2 are given in Table 27 in [1]. 

 It can be verified that 
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(3.1) 
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Let us examine the term ),( XYI  for arbitrary Nr and Nt. Let 
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where 

( ) ( )dUUUHXXXH

dUUUHXXXH

UHXXXXH
EH

rN
r

r
Nr

C

HH
iij

ij
N

N
C

HH
iij

ij

HH
ijij

ij

22
2

2

2

22

2

2

2

2

2

||exp)Re(2|)(|explog1

||exp
)(

1)Re(2|)(|
explog

))Re((2|)(|
explog),(

−⎟
⎠

⎞
⎜
⎝

⎛
+−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+−
−=

∫ ∑∑

∫ ∑∑

∑∑

ϕϕ
π

σπσσ

σ
ϕψ

 

(3.3)  

and rNC denotes the Nr-dimensional complex space. Thus the integral in the above equation is a 2Nr -
dimensional integral. 

In the SIMO case (Nt = 1), it can be shown that  
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It follows that ψ  depends only on the SINR ϕ  and does not depend on H except through its norm. 

Thus using numerical integration, a table of RBIR vs. SINR can be calculated as done in table 24 in the EVM 
[1]. 

Unfortunately, in the case Nt >1,  ψ  generally depends on HH H . It is impossible to calculate the RBIR using 
only the SINR ϕ , since the structure of the matrix HH H  may have a significant effect on the term ),( XYI .  

However, in the MIMO case (Nt = 2, Nr = 2), ),( Hϕψ  can still be calculated using numerical integration. 

Consider the integral dzzzg∫
∞

∞−

− )exp()( 2 .  Using the Gauss Quadratures method with Gauss-Hermite 

polynomials, n-point numerical integration is precise if g is a polynomial of degree 2n-1. Let nwww ,,2,1 L and 

naaa ,,, 21 L denote the weights and abscissas, respectively, for n-point integration. For the values of these 
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abscissas and weights, the reader is referred to [3].  Then if g  is smooth enough so that it can be approximated 
by a polynomial of degree 2n-1,  
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(3.5) 

Note that the weights and abscissas obey the following relation: 
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.1+−−= ini aa  

(3.6) 

For an integral over the complex plane, we have the trivial extension: 
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Similarly, for an integral over 2C , 
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Let us define the real valued function ρ over 2C  as follows: 
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where ijklU =[ T
lkji iaaiaa ], ++ . 

Since ρ is symmetric1, i.e., )()( UU −= ρρ , the computation of ),( Hϕψ  can be cut by half, if n is chosen to be 
even, as follows: 
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1 Although not readily apparent from 3.9, it can be shown that symmetry results from the summation over the i and j indices 
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Therefore ),( XYI  can be calculated using (3.2) and the numerical integration in (3.11). 

Our simulation results suggest that n-point integration is very accurate for n as low as 10 since the function ρ  
is very smooth. Larger values of n yield only a small improvement. Thus for n=10 we would need on the order 

of 5000
2

4

=
n  multiplications and evaluations of ρ . Certainly it is the evaluations of ρ  that are expensive and 

not the multiplications with the weights. An efficient way to evaluate or approximate ρ  can significantly speed 
up the integration. 

Let iH denote the ith column of H and 2
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(3.13) 

and 
2

,,, 21 Mbbb K  are the symbols of the M2-size constellation. 

Note that )(zf  is equivalent to )(zψ of the SIMO case. Thus )|,( 12 xxYI  can be calculated using Table 24 in 
EVM [1] by replacing the SINR parameter in that table with 2ϕ . 

To conclude, ),( 1xYI  in the MIMO case (Nt = 2, Nr = 2) can be calculated using (3.1), (3.2), and (3.11)-(3.13).  

The main difficulty in calculating ),( 1xYI  is in calculating ),( XYI . As mentioned earlier, the latter can be done 
using numerical integration, but it may be helpful to find more efficient methods for the sake of the reduced 
complexity of the system simulation. Until this is done, the method proposed here can be used in order to gauge 
the performance of other approximations or derivations of the RBIR for the MIMO case.  

 

4. Previously Proposed methods for the Maximum-Likelihood MIMO Receiver 
We would like to compare our approach for MIMO Matrix B system with the approach adopted in a previous 
contribution [2]. We would need to digress briefly to the SISO case in order to make our arguments in the 
sequel clearer. 

In the SISO case, it is certainly true that eqn. (1.3) in [2] holds: 
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where iLLR is the Symbol Level LLR of the ith symbol (see eqn. (1.2) in [2]) . 

Eqn. (4.1) requires one dimensional integration. However, )( iLLRp is generally cumbersome. 
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It is proposed in [2] to approximate )( iLLRp  as Gaussian with mean AVE and variance VAR. 

In the SISO case, since the LLR depends only on the SINR, a lookup table for AVE and VAR can be calculated 
and used. An attempt to generate such a table was done in Table 25 in [1]. It is important to note that currently 
there is an error in that table. Indeed, if the RBIR is plotted based on this table, by performing the integration in 
(4.1) numerically, the RBIR is not even monotonic (see Fig. 1 below), which means that in a certain region of 
SINR, we may decrease the transmit power and have better performance! Observing Appendix Q in [1], the 
error follows from lines 12 and 19 in pp. 161, which are the expressions for )( 1KE  and )( 2

1KE . 

The error is, in fact, in eqn. (1.13) in [2]. In order to calculate these expectations, it is necessary to perform 
double integration, but there is an error in the derivation and a one dimensional integral is performed instead. 

The equations should be corrected as described below. Certainly 
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holds for QPSK as mentioned in [2], where in and rn are independent zero mean Gaussian random variables 
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Now, with the corrected expression a new table for AVE and VAR can be generated. 

Using the corrected table (see Table 1 below), we can compare the RBIR calculated using Table 24 in [1], which 
calculates RBIR directly from the definition, not using the mean and variance of the LLR, the RBIR using Table 
25 in [1], and the RBIR using Table 1 below. Certainly, the RBIR vs. SINR plot should be similar whether the 
calculation is done by the direct method of Table 24 in [1], or using the Gaussian approximation for the LLR. It 
can be seen that this is indeed the case once the corrected table (Table 1) is used.  
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Figure 1. RBIR vs. SINR for QPSK in the SISO case 
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 dBγ  (dB)  [-20:0.5:30] 

AVE 

[-1.0897   -1.0886   -1.0874   -1.0861   -1.0845   -1.0828 

-1.0809   -1.0787   -1.0763   -1.0736   -1.0706   -1.0672 

   -1.0633   -1.0590   -1.0542   -1.0488   -1.0428   -1.0360 

   -1.0284   -1.0199   -1.0104   -0.9997   -0.9878   -0.9744 

   -0.9594   -0.9426   -0.9237   -0.9027   -0.8791   -0.8528 

   -0.8233   -0.7903   -0.7534   -0.7121   -0.6660   -0.6144 

-0.5568   -0.4923   -0.4202   -0.3396   -0.2494   -0.1485 

-0.0356    0.0908    0.2324    0.3910    0.5690    0.7687 

 0.9930    1.2451    1.5287    1.8481    2.2081    2.6139 

 3.0720    3.5892    4.1734    4.8336    5.5796    6.4229 

 7.3758    8.4526    9.6691   11.0431   12.5943   14.3453 

 16.3210   18.5497   21.0631   23.8966   27.0902   30.6887 

 34.7425   39.3081   44.4491   50.2368   56.7512   64.0822 

 72.3308   81.6103   92.0481  103.7868  116.9869  131.8285 

 148.5137  167.2693  188.3500  212.0417  238.6653  268.5809 

 302.1929  339.9550  382.3764  430.0288  483.5536  543.6709 

 611.1887  687.0139  772.1641  867.7816  975.1480] 

VAR 

[1.7724e-002   1.9879e-002   2.2296e-002   2.5005e-002   2.8041e-002   3.1445e-002    

 3.5259e-002   3.9533e-002   4.4321e-002   4.9684e-002   5.5691e-002   6.2416e-002    

 6.9944e-002   7.8370e-002   8.7796e-002   9.8339e-002   1.1013e-001   1.2330e-001    

 1.3802e-001   1.5446e-001    1.7280e-001   1.9327e-001   2.1609e-001   2.4151e-001    

 2.6983e-001   3.0134e-001   3.3638e-001   3.7533e-001   4.1858e-001   4.6657e-001   

 5.1979e-001   5.7876e-001   6.4407e-001   7.1634e-001   7.9627e-001   8.8465e-001    

 9.8233e-001   1.0903e+000   1.2096e+000   1.3415e+000   1.4874e+000   1.6488e+000    

 1.8278e+000   2.0264e+000   2.2472e+000   2.4930e+000   2.7674e+000   3.0743e+000    

 3.4183e+000   3.8048e+000   4.2399e+000   4.7305e+000   5.2845e+000   5.9107e+000    

 6.6189e+000   7.4200e+000   8.3258e+000   9.3493e+000   1.0505e+001   1.1808e+001  

 1.3277e+001   1.4930e+001   1.6790e+001   1.8880e+001   2.1229e+001   2.3867e+001    

 2.6830e+001   3.0158e+001   3.3895e+001   3.8091e+001   4.2803e+001   4.8093e+001    

 5.4033e+001   6.0702e+001   6.8190e+001   7.6596e+001   8.6033e+001   9.6628e+001    

 1.0852e+002   1.2187e+002   1.3686e+002   1.5368e+002   1.7257e+002   1.9377e+002    

 2.1756e+002   2.4426e+002   2.7424e+002   3.0788e+002   3.4564e+002   3.8801e+002  

 4.3557e+002   4.8895e+002   5.4885e+002   6.1608e+002   6.9153e+002   7.7619e+002 

 8.7121e+002   9.7784e+002   1.0975e+003   1.2318e+003   1.3825e+003] 

 

Table 1: Mean and Variance for Symbol Level LLR 

 

It is important to note that the approach of using the mean and the variance of the Symbol Level LLR does not 
provide any gain for the SISO case since Table 24 in [1] can be used instead. 
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It only makes sense to use this approach in the MIMO case if it provides any computation advantage over direct 
numerical integration.  

Let us return to the MIMO case for which Nr = Nt =2. In eqn. (1.18) in [2] the LLR of the first stream is 
approximated and a rather simple expression is given. In that expression the LLR of the first stream depends 
only on 1H , the first column of H, and does not depend at all on 2H , the second column of H. This expression 
is in fact the LLR of the first stream when the second stream is given (i.e., second stream is perfectly known). 
The exact expression for the LLR is much more complicated and depends, in general, on 2H . If the RBIR is 
calculated based on the approximation (1.18) in [2], it is not calculated based on ),( 1xYI , but based on  

)|,( 21 xxYI . Hence the approximation (1.18) is accurate when  )|,(),( 211 xxYIxYI ≈ . 

It can be shown that this is the case when 12 <<σ
α , where || 12 HH H=α . The case 12 <<σ

α  can certainly occur, 

but it is not guaranteed to be the only case of interest. In general, the mean and variance of the LLR of the first 
stream can depend on 2H . It can be shown that the mean and variance of the LLR depend, in general, on 4 real 

parameters: 
||
||,

||
, 1

2 H
H

H
αϕ , and )( 12 HHARG H . Hence lookup tables can be prohibitively large. Calculating the 

mean and variance requires two 4-dimensional integrations, with roughly the same complexity as in (3.11).    

Moreover, each symbol in the super-constellation has a different LLR and even if an approximation based on 
the dominant constellation points is used, as proposed in [2], still the LLRs are different because of the channel 
H. 

In [2] a fudge factor ‘a’ was introduced and carried over into the EVM text in [1].  In a sense the factor ‘a’ 
introduces back some dependency on the structure of the matrix H through its singular values. 

The danger in introducing this fudge factor is that while it may be optimized for certain values of H, it may fail 
for other values of H.  As can be seen in Table 26 in [1], the values of ‘a’ for the two different streams are not 
always the same, which does not make sense because of the following symmetry argument: we should certainly 
obtain the same BLER results for each stream if we interchange the two streams and exchange the columns of 
the matrix H.  However, replacing the columns of the matrix H does not change its singular values, but Table 26 
in [1] implies that we would get a different RBIR mapping for both streams in these two cases (i.e., before and 
after we interchange the two streams) whenever the parameter ‘a’ for those streams is not identical and the 
BLER results for each stream will be different.   

Also, the table has different values for different coding rates, which also does not make sense since RBIR is 
calculated based on the constellation and not based on coding rate. 

To illustrate the points above, we randomly picked the following normalized channel matrix 

⎥
⎦

⎤
⎢
⎣

⎡ +
=

0.0026i - 0.0434-  0.1239i - 0.6964
0.0401i - 0.1036-0.6764i  0.1673

H . We then calculated the RBIR using numerical integration and 

using Tables 25 and 26 in [1]. The results are presented in Fig. 2.  
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Figure 2. RBIR vs. SINR for QPSK in the MIMO case: numerical integration vs. tables in the EVM 

 

It can be seen that the RBIR calculated using Tables 25 and 26 in [1] does not match the correct one using 
numerical integration as described in Section 3. In fact, the behavior of the RBIR calculated from Tables 25 and 
26 is anomalous since it is not monotonically increasing and suffers from discontinuities because of the use of 
the factor ‘a’. Moreover, in some regions the curve is not even positive!  

Since we already know that Table 25 in [1] is erroneous, we use Table 1 instead of Table 25 in [1], but still use 
the factor ‘a’ as described in Table 26 in [1] to get Fig. 3.  It can be seen that RBIR calculated using these tables 
is still significantly different than the one using numerical integration and that some anomalous behavior is still 

there. Note that in the MIMO caseγ  used in Table 1 is 2

22
2 ||

σ
ϕγ i

i
Hdd == . 
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Fig. 3. RBIR vs. SINR for QPSK in the MIMO case: numerical integration vs. Table 1 and EVM Table 26 
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Figure 4. RBIR vs. SINR for QPSK in the MIMO case: numerical integration vs. Table 1 (smallα ) 

 

Finally, we use just Table 1 with no fudge factor ‘a’ to get Fig. 4. Note that for the chosen channel 2σ
α  is small 

for low and moderate SINR ϕ  since 0.09
||

||
2

12 =
H

HH H

. Hence we expect to have a good approximation of the 

RBIR when Table 1 is used. It can be seen in Fig. 4, that for both streams, the RBIR curves generated using 
Table 1 are very similar to the ones calculated using numerical integration.  

It is important to note that although Table 1 provides good results when α  is small, there is no reason to use the 
approach of calculating the RBIR using the mean and variance of the LLR. Indeed, Table 24 in the EVM [1] can 
still be used if the ‘SINR’ parameter in this table is replaced by SINR1 and SINR2 for the first and second 

streams, respectively, where SINR1 and SINR2 are defined as  2

2
1

1
||

σ
ϕ H

=  and 2

2
2

2
||

σ
ϕ H

= , respectively. 

In Fig. 5, we show that if we calculate the RBIR for the first and second streams using Table 24 in [1] as 
described above, we get a very similar figure to Fig. 4. 
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Figure 5. RBIR vs. SINR for QPSK in the MIMO case: numerical integration vs. EVM Table 24 (smallα ) 

 

We emphasize that when α  is not small, the approximation of ),( 1xYI  by )|,( 21 xxYI  may not be accurate 
anymore and hence using Table 24 in [1] or Table 1 as described above may not give us accurate results. 
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Consider the following channel as an example:   ⎥
⎦

⎤
⎢
⎣

⎡ +
=

0.0168i - 0.2796-  0.0798i - 0.4487
0.2584i - 0.6675-0.4358i  0.1078

H .  In this 

normalized channel matrix the columns of the channel from the previous example are scaled (i.e., columns H1 

and H2 are weighted by α1 and α2, respectively).  In this case 0.3
||

||
2

12 =
H

HH H

8 and α  is larger than in the 

previous example.   As can be seen in Fig. 6, the RBIR curves calculated using Table 24 in [1] (i.e., assuming 
the small α  approximation) differ from the correct RBIR curves, calculated using numerical integration. 
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Figure 6. RBIR vs. SINR for QPSK in the MIMO case: numerical integration vs. EVM Table 24 (moderateα ) 

Thus, in general, except for the case of small α , RBIR in the MIMO case should be preferably calculated using 
the numerical integration method of Section 3. Of course, it would be very useful to derive an approximation 
that would enable us to use a simple lookup table, but this approximation should hold in all cases of interest and 
not only for the case of small α . 

 

5.  Suggested Remedy 
Due to the discussion in the previous sections, we propose to make the following changes in the EVM 
document [1]. We propose to remove from section 4.3.1.3 lines 13-23 in page 63, pages 64, 65, and lines 1-2 on 
page 66 (including deletion of Table 26), and replace them with the following results from Section 3 above: 

{ 

Consider the case of channel input X = [x1, x2]T  , channel output Y =  [y1, y2]T  and channel matrix H = [H1, H2], 
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where H1 and H2 are each two-element column vectors. The symbols x1, and x2 are both taken from a 
constellations of size 1M and 2M , respectively, and hence X is taken from a super-constellation with symbols 

21
,,, 21 MMXXX K . Then  

Y = HX + U, where U is a zero mean complex Gaussian noise vector of dimension 2 with covariance I2σ . 

Define 

)(log
),(

12

1
1 M

xYI
RBIR = ,       

)(log
),(

22

2
2 M

xYI
RBIR = , 

where ),( ixYI denotes the mutual information of Y and ix . It can be verified that  [Insert reference number for 
(C80216m-08_543)]  

 

)|,(),(),( 121 xxYIXYIxYI −= , 

)|,(),(),( 212 xxYIXYIxYI −= , 

where ),( XYI  denotes the mutual information of Y and X, and )|,( 12 xxYI  and  )|,( 21 xxYI  denote the 
conditional mutual information of Y and  2x  given 1x and Y and  1x  given 2x , respectively.  

It can be shown that 

),,(1)(log),(
21

212 H
MM

MMXYI ϕψ−=  

where 

( ) ( )dUUUHXXXHH
C

HH
iij

ij

22
22 ||exp)Re(2|)(|explog1),(

2

−⎟
⎠

⎞
⎜
⎝

⎛
+−−= ∫ ∑∑ ϕϕ

π
ϕψ , 

C2 is a 2-D complex space (i.e., the above is a four-dimensional integral),  
|| H

HH = , 
2||
⎟
⎠
⎞

⎜
⎝
⎛=
σ

ϕ H , and  |H| 

denotes the Frobenius norm of H. The conditional mutual information )|,( 12 xxYI  (and in entirely analogous 
way )|,( 21 xxYI ) is given by 

)|,( 12 xxYI = ( ),1log 2
2

22 ϕf
M

M −  where 2

2

2

2

||
||||

H
HH ii

i ϕ
σ

ϕ == ,  

( ) ( )dvvvbzbbzzf
C

M

i

H
iij

M

j

2

1

2

1
2 ||exp)Re(2|)(|explog1)(

22

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−= ∫ ∑∑

==π
, 

and 
2

,,, 21 Mbbb K  are the symbols of the M2-size constellation. 

Note that )|,( 12 xxYI can be evaluated using Table 24 by replacing the SINR parameter in that table with φ2.  

Also note that ),( XYI above can be calculated using Gauss-Hermite quadrature integration.  Let nwww ,,2,1 L and 

naaa ,,, 21 L denote the weights and abscissas, respectively, for n-point integration [3]. Let us define the real 
valued function ρ over 2C  as follows: 
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( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−= ∑∑

==

2121

1

2

1
2 )Re(2|)(|explog)(

MM

i

HH
iij

MM

j

UHXXXHU ϕϕρ . 

Then  

( ) ,)(1||exp)(1
1 1 1 1

2
2

2
2

l

n

l

n

k
kji

n

j

n

i
ijkl

C

wwwwUdUUU ∑∑∑∑∫
= = = =

≈−= ρ
π

ρ
π

ψ  

     

where ijklU =[ T
lkji iaaiaa ], ++ . 

Since ρ is symmetric2, i.e., )( =)( UU −ρρ , the computation of ),( Hϕψ  can be cut in half, by choosing n even, 
as follows: 

.)(2 2/

1 1 1 1
2 l

n

l

n

k
kji

n

j

n

i
ijkl wwwwU∑∑∑∑

= = = =

≈ ρ
π

ψ        

} 

We propose to replace lines 5-11 in page 66 with the following: 

{ 

For a 2x2 system using MIMO Matrix B and horizontal encoding, the RBIR metric is computed individually for 
each stream by computing RBIR1 and RBIR2 for streams 1 and 2, respectively. 

} 

We propose to replace lines 15-18 on page 66 and lines 1-5 on page 67 with the following:  

{ 

For a 2x2 system using MIMO Matrix B and vertical encoding, RBIR can be computed as a weighted sum of 
the individual RBIRs, i.e.,  

2211 RBIRpRBIRpRBIR += ,  

where p1 and p2 are given in Table 27. 

(Note to the editor: Equation 44 from C80216m-08/004r2 needs to be saved in order to use Table 27) 

} 

In addition, we propose to replace the text in appendix Q with the following 

{ 

Appendix Q 
 

Search for the values of p1 and p2 
 
The procedure used to obtain the parameters p1 and  p2 [78] can be described as follows: 
 
                                                 
2 It can be shown that symmetry results from the summation over the i and j indices 
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Step 1: From the AWGN SINR-to-BLER curve, calculate the  SINRAWGN( BLER) from the 
 measured BLER. 
Step 2: Calculate the corresponding RBIR metric over the two streams for a given 
channel matrix ‘H’ and SINR. 
Step 3: Calculate the average RBIR metric as a weighted sum of ‘p1’ and ‘p2’ and then 
calculate the effective SINReff  value using the averaged RBIR from the SINR to 
RBIR mapping in Table 24. 
Step 4: Find the parameters p1 and p2 which result in the smallest gap over all values of 
BLER between the interpolated SINR (step 1) and effective SNR (step 3). 
 

2

)1;,(
|)()(|min

2121

BLERSINRBLERSINR effAWGNpppp
−=Δ

=+
 

 
∀BLER and ∀H which belongs to a particular range of k and  λmindB. 
} 

 

6. Conclusions 
We have shown that there are some errors in section 4.3.1.3 of the EVM document [1] that cause the RBIR 
calculation for MIMO to be erroneous. We propose to perform numerical integration using the Gauss 
Quadratures method with Gauss-Hermite polynomials to fix this problem. While from the theoretical view 
point, our solution is complete, it may be too computationally complex if RBIR mappings are done intensively. 

We showed that in some cases a simple approximation (which is equivalent to an approximation in [2]) can be 
done and a lookup table may be used, but that in the general case, this approximation may fail. Hence it would 
be desirable to develop accurate approximations for the RBIR in the MIMO case in order to replace the 
numerical integration by a more computationally-efficient method. The numerical integration method proposed 
here can then be used as an evaluation tool to gauge the accuracy of future approximations. 
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