Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16
Title	Performance comparison of IEEE 802.16m OL-SU-MIMO
Date Submitted	2009-01-05
Source(s)	Wookbong Lee, Bin-Chul Ihm E-mail: wbong@lge.com, bcihm@lge.com LG Electronics *http://standards.ieee.org/faqs/affiliationFAQ.html
Re:	Call for Comments on Project 802.16m System Description Document (SDD), IEEE 802.16m08/052 (MIMO section)
Abstract	In this contribution, we compare performance of OL-SU-MIMO candidates
Purpose	Discuss and adopt in TGm
Notice	This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the "Source(s)" field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy	The contributor is familiar with the IEEE-SA Patent Policy and Procedures: [http://standards.ieee.org/guides/bylaws/sect6-7.html\#6](http://standards.ieee.org/guides/bylaws/sect6-7.html%5C#6) and [http://standards.ieee.org/guides/opman/sect6.html\#6.3](http://standards.ieee.org/guides/opman/sect6.html%5C#6.3). Further information is located at http://standards.ieee.org/board/pat/pat-material.html and http://standards.ieee.org/board/pat.

Performance comparison of IEEE 802.16m OL-SU-MIMO
 Wookbong Lee, Bin-Chul Ihm
 LG Electronics

1. Introduction

The following features shall be accounted when we decide downlink open-loop single user MIMO scheme.

- Receiver complexity
- Precoded Pilot vs. Un-precoded Pilot
- Multiplexing different rank in distributed resource unit

2. OL-SU-MIMO candidates

In current SDD text [1], the open-loop SU-MIMO is defined as follows;
The output of resource mapping block is fed to the MIMO encoder block.
The MIMO encoder block maps $\mathrm{L}(\geq 1)$ layers onto $\mathrm{M}(\geq \mathrm{L})$ streams, which are fed to the precoding block.
The precoding block maps streams to antennas by generating the antenna-specific data symbols according to the selected MIMO mode.

On a given frequency resource k, the precoding matrix \mathbf{P} can be defined using the following equation:

$$
\mathbf{P}(k)=\mathbf{W}(k) .
$$

$\mathbf{W}(k)$ is an $N_{\mathrm{T}} \times M$ matrix, where N_{T} is the number of transmit antennas and M is the numbers of streams. The matrix $\mathbf{W}(k)$ is selected from a predefined unitary codebook, and changes every u subcarriers, and/or v OFDM symbols.

A. 4Tx Rate 1 OL-SU-MIMO candidates

Two different rate-1 OL-SU-MIMO is in SDD. In this contribution, we focus on $M=2$ case.
There are two candidates in 4Tx rate-1, $M=2$, OL-SU-MIMO mode: precoder cycling (PC) with 2 Tx SFBC and antenna hopping (AH) with 2 Tx SFBC.

AH with 2 Tx SFBC requires pilot pattern for 4 stream pilots. Pilots shall not be precoded.
PC with 2Tx SFBC requires 2 stream dedicated pilot for data demodulation. Multiplexing different rank is discussed in section 3.

B. 4Tx Rate 2 OL-SU-MIMO candidates

There are three candidates in 4Tx rate-2 OL-SU-MIMO mode: DSFBC with AH, SM with PC and SM with AH.
DSFBC or SM with AH require pilot pattern for 4 streams. Pilots shall not be precoded.
DSFBC with AH shows best performance if MMSE receiver is assumed. But it requires high receiver complexity. If we consider receiver complexity when we compare performance, SM with AH outperforms DSFBC with AH. Complexity analysis is done in section 4.

SM with PC requires 2 stream dedicated pilot for data demodulation. Multiplexing different rank is discussed in section 3.

C. 4Tx Rate 3 OL-SU-MIMO candidates

There are three candidates in 4Tx rate-3 OL-SU-MIMO mode: SM with PC, SM with AH and SFBC+SM+AH.
$\mathrm{SFBC}+\mathrm{SM}+\mathrm{AH}$ requires extremely high receiver complexity. It requires 6 by 6 matrix inversion for MMSE receiver while other candidates require only 3 by 3 matrix inversion. Complexity analysis is done in section 4. So, we focus on comparison between SM with PC and SM with AH in this contribution.

3. Pilots for OL-SU-MIMO

We summarize pilot and different rate multiplexing in pair-tone based DRU in this section.

- Precoded Pilot vs. Un-precoded Pilot
- To support 8Tx antenna OL-SU-MIMO scheme, we need to use precoded pilot since 8 Tx common pilot overhead is very high
- Some of OL-SU-MIMO scheme rely on un-precoded pilot
- Proper design of $\mathrm{W}(k)$ and u and/or v enables dedicated pilot, which gives pilot overhead reduction gain while diversity gain can be achieved by $\mathrm{W}(k)$
- In case of precoded pilot, we need to have further assumption for multiplexing different rate preferred MSs when allocation in pair-tone based DRU
- There are multiple possible solution for this, the followings are suggested solution
- Make two types of pair-tone based DRUs, one for 2 steam pilot and one for 4 stream pilot
- TDM multiplexing is preferred
- Limit pair-tone based DRU allocation for up to rate-2
- Since OL-SU-MIMO in pair-tone based DRU will be used for high speed MS, there won't be many request for higher rank transmission
- USCCH will be multiplexed with data, so it is reasonable to limit rank-2 in pairtone based DRU for transmitting USCCH otherwise pilot pattern shall be indicated by non-user specific control information

4. Complexity analysis

A. 4Tx Rate 2 comparison

Table 14 Tx rate-2 complexity comparison based on required number of multiplication per RU
(See [2] for reference)

	Rate-2 SM with MMSE	Rate-2 DSFBC with MMSE	Rate-2 SM with Simplified MLD	Rate-2 DSFBC with Simplified MLD
QPSK	$12672(100 \%)$	$74304(586 \%)$	$12960(102 \%)$	$54432(430 \%)$

IEEE C802.16m- 09/0019

16QAM	$23040(100 \%)$	$84672(368 \%)$	$43200(188 \%)$	$120960(525 \%)$
64QAM	$64512(100 \%)$	$126144(196 \%)$	$129600(200 \%)$	$352512(546 \%)$

Simplified MLD for rate-2 SM is well known that the performance is almost same as conventional full MLD.
As seen in the table, rate-2 SM with simplified MLD is much less complex than rate-2 DSFBC with MMSE. So, it is fair to compare rate-2 SM with simplified MLD with rate-2 DSFBC with MMSE.

B. 4Tx Rate 3 comparison

Table 24 Tx rate- 3 complexity comparison based on required number of multiplication per RU (See [2] for reference)

	Rate-3 SM with MMSE	Rate-3 SFBC+SM with MMSE	Rate-3 SM with Simplified MLD	Rate-3 SFBC+AM with Simplified MLD
QPSK	$35424(100 \%)$	$241920(683 \%)$	$28512(80 \%)$	$147744(417 \%)$
16QAM	$50976(100 \%)$	$273024(536 \%)$	$74304(146 \%)$	$271296(532 \%)$
64QAM	$113184(100 \%)$	$397440(351 \%)$	$222912(197 \%)$	$730944(646 \%)$

As seen in the table, rate-3 SM is extremely simpler than rate-3 SFBC+SM. So, we focus on comparison between SM with PC and SM with AH in section 5 .

5. Performance comparison

In this section, we show simulation results for paired-tone-based DRU and PRU-based DRU. Assume PRUbased DRU is spread over 48 PRUs. For paired-tone-based LDRU, subcarriers distributed over 24 distributed PRUs. Please note that PRU-based DRU is worst case study. In other words, PRU-based DRU will be worse than pair-tone-based DRU in terms of performance. Details of simulation assumption and simulated schemes can be found in Appendix section.
Furthermore, if not stated, the simulation results are based on one RU channel estimation and MMSE receiver (for rate-2 and 3).

A. 4Tx Rate 1 OL-SU-MIMO comparison

i. PRU-based LDRU

Figure 1 QPSK 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, PRU-based LDRU

Figure 2 16QAM 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, PRU-based LDRU

Figure 3 QPSK 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, PRU-based LDRU

Figure 4 16QAM 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, PRU-based LDRU

Figure 5 QPSK 1/2, Uncorrelated Channel, Extended Veh. A 120km/h, PRU-based LDRU

Figure 6 QPSK 1/2, Semi-correlated Channel, Extended Veh. A 30km/h, PRU-based LDRU

Figure 7 16QAM 1/2, Semi-correlated Channel, Extended Veh. A 30km/h, PRU-based LDRU

Figure 8 QPSK 1/2, Semi-correlated Channel, Extended Ped. B 3km/h, PRU-based LDRU

Figure 9 16QAM 1/2, Semi-correlated Channel, Extended Ped. B 3km/h, PRU-based LDRU

ii. Paired-tone-based LDRU

Figure 10 QPSK 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, Paired-tone-based LDRU

Figure 11 16QAM 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, Paired-tone-based LDRU

Figure 12 QPSK 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, Paired-tone-based LDRU

Figure 13 16QAM 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, Paired-tone-based LDRU

B. 4Tx Rate 2 OL-SU-MIMO comparison

i. PRU-based LDRU

Figure 14 QPSK 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, PRU-based LDRU

Figure 15 16QAM 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, PRU-based LDRU

Figure 16 QPSK 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, PRU-based LDRU

Figure 17 16QAM 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, PRU-based LDRU

Figure 18 QPSK 1/2, Uncorrelated Channel, Extended Veh. A 120km/h, PRU-based LDRU

Figure 19 16QAM 1/2, Uncorrelated Channel, Extended Veh. A 120km/h, PRU-based LDRU

Figure 20 QPSK 1/2, Semi-correlated Channel, Extended Veh. A 30km/h, PRU-based LDRU

Figure 21 16QAM 1/2, Semi-correlated Channel, Extended Veh. A 30km/h, PRU-based LDRU

Figure 22 QPSK 1/2, Semi-correlated Channel, Extended Ped. B 3km/h, PRU-based LDRU

Figure 23 16QAM 1/2, Semi-correlated Channel, Extended Ped. B 3km/h, PRU-based LDRU

ii. Paired-tone-based LDRU

Figure 24 QPSK 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, Paired-tone-based LDRU

Figure 25 16QAM 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, Paired-tone-based LDRU

Figure 26 QPSK 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, Paired-tone-based LDRU

Figure 27 16QAM 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, Paired-tone-based LDRU

Figure 28 QPSK 1/2, Uncorrelated Channel, Extended Veh. A 120km/h, Paired-tone-based LDRU

C. 4Tx Rate 3 OL-SU-MIMO comparison
 i. PRU-based LDRU

Figure 29 QPSK 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, PRU-based LDRU

Figure 30 16QAM 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, PRU-based LDRU

Figure 31 QPSK 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, PRU-based LDRU

Figure 32 16QAM 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, PRU-based LDRU

Figure 33 QPSK 1/2, Uncorrelated Channel, Extended Veh. A $120 \mathrm{~km} / \mathrm{h}$, PRU-based LDRU

Figure 34 16QAM 1/2, Uncorrelated Channel, Extended Veh. A 120km/h, PRU-based LDRU

ii. Paired-tone-based LDRU

Figure 35 QPSK 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, Paired-tone-based LDRU

Figure 36 16QAM 1/2, Uncorrelated Channel, Extended Veh. A 30km/h, Paired-tone-based LDRU

Figure 37 QPSK 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, Paired-tone-based LDRU

Figure 38 16QAM 1/2, Uncorrelated Channel, Extended Ped. B 3km/h, Paired-tone-based LDRU

6. Conclusions

Scheme with dedicated pilot shows better performance than scheme with common pilot due to pilot overhead gain as well as channel estimation gain (number of pilot per stream is higher for dedicated pilot aided scheme).
To reduce memory requirement, we suggest using CL-SU-MIMO codebook for OL-SU-MIMO. In this case, MS can further share its CQI estimation module.

CQI mismatch will be increased if codebook element is changed for different subframe in same physical RU. This is because sometimes MS will be allocated N RU x 1 subframe, and sometimes MS will be allocated N RU x 2 subframes. MS does not know it will be allocated to one subframe or two subframes when it calculates CQI. So we suggest same codebook element shall be applied in same physical RU for a certain period. In other words, the precoder shall not be changed over time.

To enable subband selection gain as well as possible multiple RU channel estimation, we further propose
precoder cycling duration as one subband. A subband size in IEEE 802.16e is 4PRU. As seen in the simulation results, this size does not impact on performance.

Here is the summary of proposed details of OL SU-MIMO.

- Precoded demodulation pilot shall be used for OL SU-MIMO, in other words, pilots are precoded with same precoder as in OL-SU-MIMO, $\mathrm{W}(k)$
- $\mathrm{W}(k)$ shall be chosen based on CL SU-MIMO codebook or its subset
- Size of u shall be same as subband, typically 4PRU
- Precoder shall be fixed over time

7. Proposed remedy

Remedy 1 - In line 2-6, page 101, modify the texts as follows:

$\mathrm{W}(k)$ is an $N_{\mathrm{T}} \times N_{S}$ matrix, where N_{T} is the number of transmit antennas and N_{S} is the numbers of streams. The matrix $\mathrm{W}(\mathrm{k})$ is selected from a predefined unitary codebook, and changes every $u \cdot$ P $_{\text {SC }}$ subcarriers, and may change v subframes, and/or v OFDM symbols. The matrix $W(k)$ can be identity matrix for 2 Tx rate 2 and 4 Tx rate-4. A codebook is a unitary codebook if each of its matrices consists of columns of a unitary matrix. [The detailed unitary codebook, and the parameter u and v are FFS. The CL SU MIMO and OL SU MIMO may use different unitary codebooks.]

Remedy 2 - In line 6-10, page 119, modify the texts as follows:

$\mathrm{W}(k)$ is an $N_{\mathrm{T}} \times N_{\mathrm{S}}$ matrix, where N_{T} is the number of transmit antennas and N_{S} is the number of streams. The matrix $\mathrm{W}(k)$ is selected from a predefined unitary codebook, and changes every $u \cdot \mathrm{P}_{\mathrm{SC}_{C}}$ subcarriers, and may change v subframes, and/or v OFDM symbols. The matrix $W(k)$ can be identity matrix for 2 Tx rate- 2 and 4 Tx rate-4 spatial multiplexing case. A codebook is a unitary codebook if each of its matrices consists of columns of a unitary matrix. [The detailed unitary codebook, and the parameter u and v are FFS.]

Appendix1: Simulation assumptions

Carrier frequency	2.5 GHz
System bandwidth	10 MHz
Number of transmit antennas	4
Number of receive antennas	2,4 (for rate-3 comparison)
Base station correlation	Uncorrelated semi-correlated : 4 lambda with 15 degree AS with -60:60 AoD, randomly selected for each snapshot
Mobile station correlation	Uncorrelated

Resource block size	18 sub-carriers $\times 6$ OFDM symbols
Number of resource block	4 resource blocks
Distribution mode	$\bullet \quad$ PRU-based LDRU $-\quad 4$ RUs distributed over 48 PRUs Paired-tone-based LDRU $-\quad 4$ RUs: subcarriers distributed over 24 distributed PRUs
Channel encoding	3GPP LTE Turbo code: QPSK $1 / 2,16 \mathrm{QAM} 1 / 2$
Channel Model	ITU Extended Ped B $-3 \mathrm{~km} / \mathrm{hr}$ Channel Estimation
Pilot pattern	Dedicated or Common pilots

Appendix2 : Details of OL SU-MIMO Schemes

		Precoders W applied to physical antennas ($\mathbf{y}=\mathbf{W} \times \mathbf{z}$)
Rate 1	SFBC+AH : Non-precoded pilots - Pattern B	$\mathbf{z}=\left[\begin{array}{cc} s_{1} & -s_{2}^{*} \\ s_{2} & s_{1}^{*} \end{array}\right], W=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right]$: Cycling duration $(u, v)-(2,1)$, The precoder cycling must be done in the both frequency and time directions. 1- Cycle through the precoders every pair of tones of an OFDM symbol. 2- For the next OFDM symbol repeat step 1 but start form another precoder index to make sure to adjacent tones in the time direction are not identical.
	SFBC + PC, Case 1 Precoded pilots Pattern A	$\mathbf{z}=\left[\begin{array}{cc}s_{1} & -s_{2}^{*} \\ s_{2} & s_{1}^{*}\end{array}\right], \quad \mathrm{W}_{S}$ is first two columns of rate-4 IEEE 802.16e 6bit codebook's S 's indexed Codebook Matrix. Here S is also index of physical subband (1 subband $=4$ PRU). : Cycling duration (u, v) - (4PRU, and constant in time)
	SFBC+PC, Case2 : Precoded pilots Pattern A	$\mathbf{z}=\left[\begin{array}{cc}s_{1} & -s_{2}^{*} \\ s_{2} & s_{1}^{*}\end{array}\right]$,

		$W=\frac{1}{2}\left[\begin{array}{cc} 1 & -1 \\ -1 & -1 \\ 1 & 1 \\ -1 & 1 \end{array}\right], \frac{1}{2}\left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \\ 1 & 1 \\ -1 & -1 \end{array}\right], \frac{1}{2}\left[\begin{array}{cc} 1 & -1 \\ 1 & -j \\ 1 & 1 \\ 1 & j \end{array}\right], \frac{1}{2}\left[\begin{array}{cc} 1 & -1 \\ 1 & j \\ 1 & 1 \\ 1 & -j \end{array}\right]$: Cycling duration (u, v) - (1PRU, and constant in time)
	SFBC +PC , Case 3 Precoded pilots Pattern A	$\mathbf{z}=\left[\begin{array}{cc}s_{1} & -s_{2}^{*} \\ s_{2} & s_{1}^{*}\end{array}\right], \mathrm{W}_{S}$ is the codeword with index s of IEEE 802.16e $\mathrm{V}(4,2,6)$ codebook. Here s is the index of PRU. If the number of PRU is larger than the codebook size, the codeword is cycling used. : Cycling duration $(u, v)-(1$ PRU, and constant in time $)$
Rate 2	SM + AH : Non-precoded pilots - Pattern B	$\mathbf{z}=\left[\begin{array}{l} s_{1} \\ s_{2} \end{array}\right], W=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right],\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right],\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right]$: Cycling duration $(u, v)-(1,1)$ The precoder cycling must be done in the both frequency and time directions. 1- Cycle through the precoders every tone of an OFDM symbol. 2- For the next OFDM symbol repeat step 1 but start form another precoder index to make sure to adjacent tones in the time direction are not identical.
	DSFBC+AH Non-precoded pilots - Pattern B	$\mathbf{z}=\left[\begin{array}{cc} s_{1} & -s_{2}^{*} \\ s_{2} & s_{1}^{*} \\ s_{3} & -s_{4}^{*} \\ s_{4} & s_{3}^{*} \end{array}\right], W=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right],\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right],\left[\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}\right]$: Cycling duration $(u, v)-(2,1)$ The precoder cycling must be done in the both frequency and time directions. 1- Cycle through the precoders every pair of tones of an OFDM symbol. 2- For the next OFDM symbol repeat step 1 but start form another precoder index to make sure to adjacent tones in the time direction are not identical.
	SM +PC , Case 1 : Precoded pilots Pattern A	$\mathbf{z}=\left[\begin{array}{l}s_{1} \\ s_{2}\end{array}\right], \mathrm{W}_{S}$ is first two columns of rate-4 IEEE 802.16e 6bit codebook's S 's indexed Codebook Matrix. Here S is also index of physical subband (1 subband $=4$ PRU). : Cycling duration $(u, v)-(4$ PRU, and constant in time)
	SM +PC , Case2 : Precoded pilots Pattern A	$\begin{aligned} \mathbf{z} & =\left[\begin{array}{l} s_{1} \\ s_{2} \end{array}\right], \\ W & =\frac{1}{2}\left[\begin{array}{cc} 1 & -1 \\ -1 & -1 \\ 1 & 1 \\ -1 & 1 \end{array}\right], \frac{1}{2}\left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \\ 1 & 1 \\ -1 & -1 \end{array}\right], \frac{1}{2}\left[\begin{array}{cc} 1 & -1 \\ 1 & -j \\ 1 & 1 \\ 1 & j \end{array}\right], \frac{1}{2}\left[\begin{array}{cc} 1 & -1 \\ 1 & j \\ 1 & 1 \\ 1 & -j \end{array}\right] \end{aligned}$: Cycling duration $(u, v)-(1$ PRU, and constant in time)

	SM +PC , Case 3 : Precoded pilots Pattern A	$\mathbf{z}=\left[\begin{array}{l}s_{1} \\ s_{2}\end{array}\right], \mathrm{W}_{S}$ is the codeword with index s of IEEE 802.16e $\mathrm{V}(4,2,6)$ codebook. Here s is the index of PRU. If the number of PRU is larger than the codebook size, the codeword is cycling used. : Cycling duration $(u, v)-(1$ PRU, and constant in time)
Rate 3	$\mathrm{SFBC}+\mathrm{SM}+\mathrm{AH}$: Non-precoded pilots - Pattern B	$\mathbf{z}=\left[\begin{array}{cc} s_{1} & -s_{2}^{*} \\ s_{2} & s_{1}^{*} \\ s_{3} & s_{5} \\ s_{4} & s_{6} \end{array}\right], W=\left[\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right],\left[\begin{array}{llll} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right]$: Cycling duration $(u, v)-(2,1)$ The precoder cycling must be done in the both frequency and time directions. 1- Cycle through the precoders every pair of tones of an OFDM symbol. 2- For the next OFDM symbol repeat step 1 but start form another precoder index to make sure to adjacent tones in the time direction are not identical.
	$\mathrm{SM}+\mathrm{AH}$: Non-precoded pilots - Pattern B	$\mathbf{z}=\left[\begin{array}{l} s_{1} \\ s_{2} \\ s_{3} \end{array}\right], W=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right],\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right],\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right],\left[\begin{array}{lll} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$: Cycling duration $(u, v)-(1,1)$ The precoder cycling must be done in the both frequency and time directions. 1- Cycle through the precoders every tone of an OFDM symbol. 2- For the next OFDM symbol repeat step 1 but start form another precoder index to make sure to adjacent tones in the time direction are not identical.
	SM + PC, Case 1 : In case of tone based DRU Pattern B In case of PRU based DRUFirst 3 pilot streams of Pattern B	$\mathbf{z}=\left[\begin{array}{l}s_{1} \\ s_{2} \\ s_{3}\end{array}\right], \mathrm{W}_{S}$ is first three columns of rate-4 IEEE 802.16e 6bit codebook's S 's indexed Codebook Matrix. Here S is also index of physical subband (1 subband $=4$ PRU). : Cycling duration (u, v) - (4PRU, and constant in time)
	SM + PC, Case 3 : In case of tone based DRU Pattern B In case of PRU based DRUFirst 3 pilot streams of Pattern B	$\mathbf{z}=\left[\begin{array}{l}s_{1} \\ s_{2} \\ s_{3}\end{array}\right], \mathrm{W}_{S}$ is the codeword with index s of IEEE 802.16e $\mathrm{V}(4,3,6)$ codebook. Here s is the index of PRU. If the number of PRU is larger than the codebook size, the codeword is cycling used. : Cycling duration (u, v) - (1PRU, and constant in time)

Reference

[1] IEEE 802.16m-08/003r6, "The Draft IEEE 802.16m System Description Document."
[2] C80216m-08/426r1, "An Open-loop MIMO Scheme based on Phase Shift Diversity."

