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Efficient Demodulators for the DSTTD Code
N. Prasad, M. Jiang, M. A. Khojastepour, X. Wang, S. Rangarajan

I. INTRODUCTION

In this contribution we obtain a fast (hard decision) maximum-likelihood (ML) decoder for

the rate-2 4 × 2 DSTTD code (or the DSFBC code), that has a complexity of O(M2), where

M is the constellation size. Moreover, an efficient soft-output version of O(M2) complexity is

also possible. Further, it is shown that the structure of the DSTTD code can be exploited to

obtain substantial complexity reduction when computing the filters for the sub-optimal MMSE

demodulation.

II. MIMO SYSTEM MODEL

The complex baseband model for a MIMO link employing the DSTTD code is given by

Y = [y1,y2] = HX + V, (1)

where H = [h1,h2,h3,h4] denotes the Nr × 4 complex-valued channel matrix representing

the fading, with Nr ≥ 2. X denotes the 4 × 2 DSTTD code which transmits 4 quadrature

amplitude modulation (QAM) symbols every two channel uses and hence has a symbol rate of

2. In particular

X =




x1 −x†2

x2 x†1

x3 −x†4

x4 x†3




(2)

where {xi}4
i=1 are the QAM symbols and (.)† denotes the conjugate transpose operation.

We can express (1) in an equivalent representation as

ỹ = H̃x̃ + ṽ (3)
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where ṽ is the noise vector with i.i.d. complex proper normal, zero-mean and unit variance

elements, x̃ = [x1, x2, x3, x4]
T , ỹ = [yT

1 ,y†2]
T and

H̃ =




h1 h2 h3 h4

h̄2 −h̄1 h̄4 −h̄3


 (4)

where (̄.) denotes the conjugate operation.

Assuming that H is perfectly known to the receiver, the optimal detector minimizing the error

probability is the maximum likelihood (ML) detector, which solves the following least squares

minimization problem.

x̃∗ = arg min
x̃∈O4

∥∥∥ỹ − H̃x̃
∥∥∥
2

(5)

where O stands for the set of underlying constellation points in M -QAM. It is clear that an

exhaustive search for the ML solution has the complexity O(M4).

Applying the QR decomposition to the equivalent MIMO channel matrix H̃ in (4) , we have

H̃ = Φ̃L̃ (6)

where L̃ = [̃l1, ..., l̃4] is a 4× 4 lower triangular matrix with positive diagonal elements. Φ̃ is a

semi-unitary matrix with Φ̃†Φ̃ = I.

We shall first optimize over symbols {x3, x4} by fixing the choice of {x1, x2}. For convenience,

we define the vectors z̃12 = [x1, x2]
T for symbols {x1, x2} and z̃34 = [x3, x4]

T for symbols

{x3, x4}.

By left multiplying ỹ in (3) by Φ̃†, we obtain

Ξ̃ = Φ̃†ỹ = L̃x̃ + ˜̃v (7)

The maximum likelihood detector chooses x̃ using the rule

x̃∗ = arg min
x̃∈O4

∥∥∥Ξ̃− L̃x̃
∥∥∥
2

(8)

For any fixed choice of z̃12, i.e. z̃0
12, defining Ω̃ = Ξ̃ − [̃l1, l̃2]z̃

0
12, the minimization in (8)

3



IEEE C80216m-09/0079r1

reduces to

min
z̃34∈O2

∥∥∥Ω̃− [̃l3, l̃4]z̃34

∥∥∥
2
. (9)

The particular structure of the DSTTD code defined in (2) ensures a nice structure of L̃

and dramatically reduces the detection complexity. It is shown in Appendix 1 that the overall

complexity of determining the optimal z̃∗34 in (9) for any given z̃0
12 (i.e., any fixed {x0

1, x
0
2}) is

O(1). Thus, for all combinations of symbols x1 and x2, we can determine the M2 soft metrics

denoted by λ(x1i, x2j), 1 ≤ i, j ≤ M , where xnm refers to choosing m-th constellation point in

the M-ary constellation set for symbol xn, with O(M2) complexity.

λ(x1i, x2j) =
∥∥∥Ω̃− [̃l3, l̃4]z̃

∗
34

∥∥∥
2

= min
z̃34∈O2

∥∥∥Ω̃− [̃l3, l̃4]z̃34

∥∥∥
2

(10)

where note that Ω̃ depends on (x1i, x2j).

Thus, the ML metric which corresponds to the optimal decision for four transmitted symbols

{x∗1, x∗2, x∗3, x∗4} (or x̃∗ = [z̃∗T12 z̃∗T34 ]T in the vector form) is given by

λML = min
1≤i,j≤M

λ(x1i, x2j). (11)

The metrics {λ(x1i, x2j), 1 ≤ i, j ≤ M} also allow us to compute log likelihood ratios (LLRs)

for the coded bits associated with symbols x1, x2. A similar approach can be applied to compute

the metrics and LLRs for the coded bits associated with symbols x3, x4. Thus, the structure of

the DSTTD code enables an efficient soft-output demodulator with O(M2) complexity.

Note that the efficient demodulator derived above readily applies to any row-permuted version

of the DSTTD. In particular let P denote a 4× 4 permutation matrix and let S = PX denote a

row-permuted version of the DSTTD code matrix X in (2). The resulting model is now given

by

Y = [y1,y2] = HS + V = HPX + V. (12)

Assuming H′ = HP to be the channel matrix, we can proceed as before.

Finally, the efficient demodulators also readily apply to the following case. Let X1 denote the

4
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DSTTD code in (2) and let S2 = PX2 denote a row-permuted DSTTD, where

X2 =




x5 −x†6

x6 x†5

x7 −x†8

x8 x†7




, (13)

is a DSTTD with QAM symbols {xi}8
i=5. Consider the received model over four channel uses

Y = [Y1,Y2] = [H1X1,H2S2] + V. (14)

Assuming the additive noise in (14) to be temporally uncorrelated, without loss of optimality, we

can consider the demodulation of {xi}4
i=1 and {xi}8

i=5 separately, using Y1 and Y2, respectively.

Each such demodulation can be efficiently performed using the demodulator proposed above.

III. MMSE DEMODULATOR

In this section we show that the structure of the DSTTD code also simplifies the sub-

optimal MMSE demodulation. In particular, the computation of the MMSE filters can be greatly

simplified by exploiting the structure of the effective channel matrix in (4). For convenience

we assume two receive antennas and consider the equivalent representation in (3). Note that

to compute the MMSE filters, we need to determine R̃−1, where R̃ = E[ỹỹ†] is the 4 × 4

covariance matrix. It can be verified that the covariance matrix R̃ has the following structure

R̃ =




a c 0 d

c̄ b −d 0

0 −d̄ a c̄

d̄ 0 c b




, (15)

where a, b are positive-valued scalars and c, d are complex-valued scalars such that R̃ Â 0. The

set of all such matrices forms a matrix group G under matrix multiplication so that if R̃ ∈ G
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then R̃−1 ∈ G. Using these results we can obtain R̃−1 very easily as:

R̃−1 = q




b −c 0 d

−c̄ a −d 0

0 −d̄ b −c̄

d̄ 0 −c a




, q =
1

|c|2 + |d|2 − ab
. (16)

IV. CONCLUSIONS

The 4 TX rate-2 DSTTD (or DSFBC) code allows for efficient demodulation. This code was

shown to have superior performance in both correlated and un-correlated scenarios in [1]. Thus,

it should be selected as the 4 TX rate-2 open loop SU-MIMO scheme.

APPENDIX 1: FINDING THE OPTIMAL z̃∗34 FOR A GIVEN z̃12 = z̃0
12

For the DSTTD code, the QR decomposition of H̃ defined in (6) produces a special lower-

triangular matrix L̃ in which [̃l3, l̃4] (a 4× 2 matrix) has the the following structure, which can

be utilized to substantially reduce the detection complexity.

[̃l3, l̃4] =




0 0

0 0

a 0

0 a




(17)

where a is a positive scalar.

Letting b̃ = [b1, b2, b3, b4]
T = Ξ̃− [̃l1, l̃2]z̃

0
12, for any given z̃12 = z̃0

12, the optimal z̃∗34 can be

obtained as

z̃∗34 = arg min
z̃34∈O2

∥∥∥b̃− [̃l3, l̃4]z̃34

∥∥∥
2

=


arg min{x3}∈O ‖b3 − ax3‖2

arg min{x4}∈O ‖b4 − ax4‖2


 (18)

where O stands for the set of underlying constellation points in M -QAM. Each minimization

in the RHS of (18) can be done using simple quantization in O(1) complexity. Thus, for each
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choice of z̃12 (i.e. symbols {x1, x2}), we can determine the best z̃34 (i.e. symbols {x3, x4}) with

a complexity that is O(1).

REFERENCES

[1] Yinggang Du, Hongjie Si, Yinwei Zhao, Xin Chang, Yang Tang and Ying Du, “Performance evaluation of DL OL SU-

MIMO Transmit Scheme,” IEEE C802.16m-08/1306, Nov. 2008.

7



IEEE C80216m-09/0079r1

PROPOSED TEXT

[Section 11.8.2.1.1 “Open-loop SU-MIMO”]

Accept the 4Tx rate-2 Double SFBC + Antenna hopping as an open-loop SU-MIMO scheme

in the downlink.

[Section 11.12.2.1.1 “Open-loop SU-MIMO”]

Accept the 4Tx rate-2 Double SFBC + Antenna hopping as an open-loop SU-MIMO scheme

in the uplink.
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