

Scaling RPR with multiple rings: One control plane multiple transit paths

Fredrik Orava

Outline

- Definition--what is multiple rings
 - independently operating unidirectional transit paths
- Motivation--why multiple rings
 - scalability
 - protection
 - asymmetric capacity
- How to implement
 - simple MAC model
 - implications
- Proposal

Multiple rings

- Links:
 - multiple (>2)
 - independently operating
 - unidirectional
- Nodes:
 - connect to number of links
 - aggregate physical links into logical interfaces
 - several physical Mac:s into logical MAC

Scalability

Problems:

- some fibres has limited transmission capacity
 - cannot scale by increasing speed or use WDM
- high speed optics expensive
 - costly to scale by increasing link speed
- linear increase
 - no scaling by factor of four or increase in magnitude

Conclusion:

- scale by adding multiple rings
- Benefits
 - each additional ring increases the capacity
 - cheaper to add ring than to increase speed
 - individual rings can be operated at different speed
 - one logical Mac--several physical
 - the rings are managed as one aggregated link

Protection

Goal: Should be efficient in terms of bandwidth and be able to handle multiple failures.

- Any ring should be able to protect traffic carried on other rings
 - Can distribute protected traffic over several rings
 - More efficient than 1+1 protection (can utilise more of the total bandwidth)
 - 1+1 cannot handle more than one independent failure
 - 1+1 schema can never utilise more than 50% of total capacity
- Example:
 - Assume equal capacity on all rings, equal distribution of protection capacity
 - N: number of links
 - F: number of link failures (assume ring goes away on failure)
 - Protection capacity on each link (%): P = F/N
 - Available capacity on each link (%): A = 1-F/N
 - Assume four rings of capacity C, one link failure
 - 1+1: total capacity 2*C
 - Independent: total capacity 4*C*(1-1/4) = 12*C/4 = 3*C

Protection (cont'd)

<u>Goal:</u> Should be able to repair (replace) component without disturbing other traffic.

- Requirement:
 - No dependency between paths!
 - Rings should be operated independently!

Management of multiple rings

- Aggregate several physical MAC:s to one logical
 - Higher layers sees one interface towards the aggregated link.
 - MAC client routes traffic to logical MAC.
 - How to choose physical MAC?
 - map traffic aggregate to virtual output queue
 - assign VOQ to physical MAC
 - needs topology knowledge (topology/nodes attached)
 - needs resource knowledge (required/available)

Use model from link aggregation in 802.3

- Aggregator
 - allocates "conversations" to MAC:s
 - runs "marker protocol"

- Aggregation control
 - controls aggregation of links into multilink

Link aggregation in RPR

- Distributor--selects MAC and VOO based on:
 - destination
 - resources needed by traffic aggregate ("conversation")
 - resources available on ringlet
- Main differences:
 - 802.3
 - only point to point links
 - links connect same systems
 - RPR
 - add-drop links
 - links may connect different systems

Asymmetric capacity of segments

- Use rings to which not all nodes are connected
 - Speed on individual rings is the same over all segments
 - Aggregated capacity of segments could differ
 - nodes can communicate (w/o router/ bridge hop) if they share ringlet

- I mplications:
 - need boot process to detect topology and nodes of each ring
 - se Frederic Thepot's presentation
 - need mechanism to route traffic to suitable ring
 - as described earlier

Proposal:

PRP MAC should not preclude aggregation of multiple unidirectional independently operating multiple rings.