

IP Differentiated Services Requirements for RPR

Siamack Ayandeh

sayandeh@onexco.com

Igor Zhovnirovsky

igorz@onexco.com

Onex Communications Corp

Outline

- Inter-operability or inter-working
- IP Differentiated Services background
 - Why DiffServ
- IP Differentiated Services requirements for RPR
 - Bandwidth allocation & scheduling
 - Buffer management & packet drop criteria
- RPR options in supporting Differentiated Services
- A phased approach

Reference Model for DS Compliant RPR

- First option is similar to RPR being the media within a DiffServ domain
- First option is the focus of this presentation
- First option leads to interoperability which is desirable vs. inter-working gateways

Classification	Packet Cond	Per Hop Behavior	Per Domain BA
- Behavior Aggregate	- Metering	- Expedited Forw	- Routing
- Multi-field classification	- Marking	- Assured Forw	- Network metrics e.g.
* IP version	- Dropping	- Class Selector	max hop count, edge to
* Src/Dst IP address	- Shaping	Code Pnt	edge delay/jitter
* Protocol type		- Default Forw	- How to measure metrics
* Src/Dst Port #			- Example use to create
* etc.			services

80/20 rule favors single DS domain deployments

7 Reasons to use DiffServ

- There is more to offering service differentiation than scheduling bandwidth and managing buffers
- Context for service differentiation includes:
 - Service definition and pricing models
 - Service sale, activation, and change
 - Provisioning & configuration of network elements
 - Service monitoring
 - Accounting and billing support
- IETF has spent over three years, several dozen drafts, and Gigabytes of email to move DiffServ forward

7 Reasons to use DiffServ

- All power to service providers
 - Control over allocation/partitioning of resources
 - Control over service definition
- Was designed for data centric networks
- Specifies enough to achieve inter operability while allowing vendor differentiation in implementations
- TTM, re-use, and simplicity

DiffServ Building Blocks needed in RPR

Per Domain Behavior Aggregates (PDB)	Per Hop behavior (PHB)	Characteristics & likely services
Virtual wire	Expedited Forwarding (EF)	Low delay, jitter, loss VLL, voice
Assured rate	Assured Forwarding (AF) {AF11, AF12, AF13} gold {AF21, AF22, AF23} silver {AF31, AF32, AF33} bronze {AF41, AF42, AF43}	Controlled Overbooking, Gold, silver, Bronze
Yet to come	Class Selector Code Pnts {CSC 17}	Legacy TOS, Control & network Traffic
05/29/01 IEEE 802	Best Effort Bkcg 2.17 RPRWG 802-17-01-00006 / sa_ipdiff_02	etc. 2.pdf Siamack Ayandeh

T (F • •	1 • 4	4
Minimum	hit	rate

- Required by both EF & AF per hop behaviors
- EF also requires low delay, jitter, and loss
- Active queue management
 - Assured forwarding requires properties of a WRED like algorithm, avoiding tail drop
 - Some amount of buffer space

MAC	MAC
✓	✓
/	✓
?	✓
/	✓

Map DiffServ to 802.1p

Per Domain Behavior	Per Hop Behavior	802.1p
Aggregates (PDB)	(PHB)	Assuming 7 queues
Virtual wire	EF	Q6, voice
Assured rate	AF ₁₁ ,, AF ₃₃	Q3, 4, 5 Exc effort, CL, Video
Yet to come	CSC 17	Q7, Network control
•	BE	Q2, best effort
•	Bkcg	Q1, background

•

Desired mapping is up to the service provider However it is not fully DS compliant

RPR DiffServ Requirements

- Minimum of four Classes of Service
 - Class 1: TDM look & feel

\$\ \text{Enforced peak rate,} \\ \text{P2P circuit characteristic} \end{aligned}

- Class 2: Control & network traffic
- Class 3: Assured service
- Class 4: Best Effort

- \$ Controlled overbooking, Single ended SLAs, connectionless
- \$ Overbooked

• Buffer Management

- Class 1: no drop due to congestion (provision α1 ~25%)
- Class 2: no drop due to congestion (provision $\alpha 2 \sim 5\%$)
- Class 3: drop according to DiffServ rules (provision α3)
 - If these rules are kept outside of MAC layer, then MAC should not drop class 3 packets due to congestion
- Class 4: may be tail dropped or use RED

TDM RPR Requirements

- TDM requires high (non-preemptive) scheduling priority
 - Is peak rate limited at each station (outside of the MAC layer) and has p2p routes
 - Provisioned at (\leq α 1) small fraction of ring capacity, therefore no loss is expected or enforced
 - In practice expect less than 15% occupancy due to TDM traffic
 - "Fairness" = bounds on transfer delay & jitter for class-1 packets
 - irrespective of the station, port, or flow they belong to

TDM RPR Req (cont.)

Peak Rate [kbps]	Fraction of	
Per Station	Ring	
p1	α11	
p2	α21	
•••		
pn	αn1	

 $\sum \alpha_{i1} = \alpha 1$

- Note there is no mention of scheduler implementation
- Or how many queues there are
 - If transit and add are one FIFO or separate
 - Whether there are per flow queues
- Metrics are guaranteed for all the packets that pass policing (say between M1 ingress & M2 egress)

Assured Service RPR Req.

- Assured service (AS) requires a minimum bit rate guarantee
 - Should not starve best effort
 - Packets are marked outside of the MAC layer
 - Will the MAC or a shim header carry the markings? (need 6 bits)
 - Controlled over booking is driven by **single ended SLAs**, i.e.
 - The amount of AS traffic volume sourced per station is known
 - However the destinations may be one to one (video streaming), one to many (VPN), or one to any (Internet)
 - So volumes of traffic going to any destination are generally unknown
 - May not be able to explicitly reserve bandwidth along a given path

Single Ended SLA's

Let's look at the sum of all the single ended SLA's per station for AS

Committed Rate [kbps]	Excess Rate [kbps]		Station's ring access weight	1-w
Marked [AF _{x1}]	Marked [AF _{x2,x3}]	-	w = f(S)	Transit W
S 1	S1'	Ī	w1	Add
S2	S2'		w2	
•••	•••		•••	
Sn	Sn'		wn	

- Commitments are at the access only, often do not specify path, & may be
 - Hard with negligible probability of loss due to congestion or
 - Soft, with a given probability of loss specified in the SLA
- Excess rates are carried as best effort, and should be dropped first, using WRED like algorithm

All RPR standard needs to specify is a guarantee for a minimum rate S

Loss less Ring vs. WRED

- To support DiffServ's assured services (AS), RPR has two options:
 - Use some form of congestion avoidance and large transit buffers to avoid loss of AS packets on the ring, pushing congestion to add queues
 - Add queues would have to support WRED (presumably outside of MAC)
 - Many candidate algorithms (iPT, DPT, weighted fairness)+ are contending to achieve this goal over the next couple of years
 - Use open loop congestion control, i.e. enable transit & add queues with WRED
 - Leave congestion control to TCP
- For both options "fairness" has two components:
 - One, "weighted fairness" which is simply a minimum rate guarantee and is implemented through per station scheduling (slide #14)
 - Two, to remove station location advantage in accessing excess ring bandwidth i.e. weighted fair access to **EXCESS** ring bandwidth

Station Location Advantage

- If all the stations are accessing the ring, i.e. adding traffic, with or in excess of their allocated weight w, then fair access is ensured by per station scheduling
- If some of the stations are idle or below their weight, how should the excess bandwidth be scheduled?
- Upstream stations e.g. may have advantage in grabbing the excess bandwidth
- How this **EXCESS** bandwidth is allocated is purely a local matter and is not specified by DiffServ or any other standard
 - e.g if station-2 is idle, its share may be divided according to (w1, w3, w4) which happen to be currently active stations with traffic destined to outgoing fiber of station-1
- With any to any traffic patterns which is the basic assumption behind spatial re-use, different stations become upstream, and in the long run, the ring is fair
- For **hubbed traffic patterns**, the issue is persistent
- RPR WG may choose to deal with the specific hubbed scenario at a later phase

Issues with congestion avoidance

- It is difficult to tune these algorithms
 - Simulation of OC192 ring needs to mimic ~ 40 million packets/events per second and 10^5 to 10^6 simultaneous TCP connections
- Requires large transit buffers due to delay bandwidth product of the ring (ignoring nodal delay for now)
 - Buffers need to be engineered per ring configuration or for worst case

Rate	Distance	Delay	Bytes in Transit
	[km]	[ms]	
OC 3	300x2	3	64 [kbyte]
OC48	300x2	3	1 [mbyte]
OC48	600x2	6	2-4 [mbyte]
OC192	2000x2	20	32 [mbyte]

- Small transit buffer's, amongst other things increase jitter for add traffic
- Congestion notification traffic needs timely delivery and competes with class-1 service queues

802.17

CSC & Best Effort

- Class Selector Code (CSC) Points {1...7}
 - Forms a small amount of traffic $\alpha 2$ (approximately < 5%)
 - Should be carried with priority compared to assured services, yet has no tight requirement for bounded delay
 - Jitter is not an issue
 - Expects no loss
 - "Fairness" = Carry with priority compared to Assured Service & best effort, with no loss
- **Best effort** should not be starved $(\alpha 1 + \alpha 2 + \alpha 3 < 1)$
 - May be tail or RED dropped, matter of vendor differentiation
 - No particular fairness issue, however RPR may decide to resolve the "station location advantage"

RPR Requirements Summary

	Vendor Diff	Standard Inte	er-working issue with other layers
Service Differentiation frame work		✓	✓
Station location advantage		✓	
Priority for TDM/LF & min bit rate for assured		✓	✓
Packet drop precedence Or no loss Schodular implementation		✓	✓
Scheduler implementation Organization of buffers/queues			
(including per flow) Best effort tail drop vs. RED	✓		

Roadmap to DiffServ Compliance

- Support a 3 level priority scheme (classes 1, 2, 4) to be 75% DiffServ compliant
 - Delivers TDM L&F, CSC {1...7}, and Best Effort
 - Transit queues may support RED or tail drop as a matter of vendor differentiation
- Support a minimum rate for add traffic of assured service class, and WRED in transit and add queues
 - Delivers full compliance with DiffServ

Resolve the "station location advantage" using w-fair congestion avoidance to deal with hubbed traffic patterns, (WRED would no longer be needed in transit queues)

Late 2002

Today