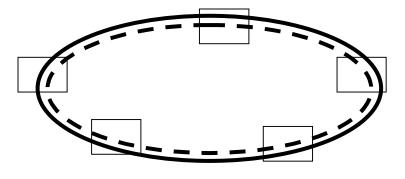
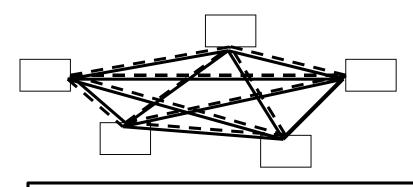

RPR MAC: Data Path Objectives

Harry Peng: hpeng@nortelnetworks.com

Content


- An RPR Network and Applications
- What is RPR
- Challenges for RPR
- MAC In Perspective
- MAC Components

Provide Services with LOWEST cost per MANAGED bit Design to provide maximum BW available 3


March 2001

RPR has a dual nature

Physical View

•Two counter rotating rings

Data Plane Logical View

•Two fully mesh network

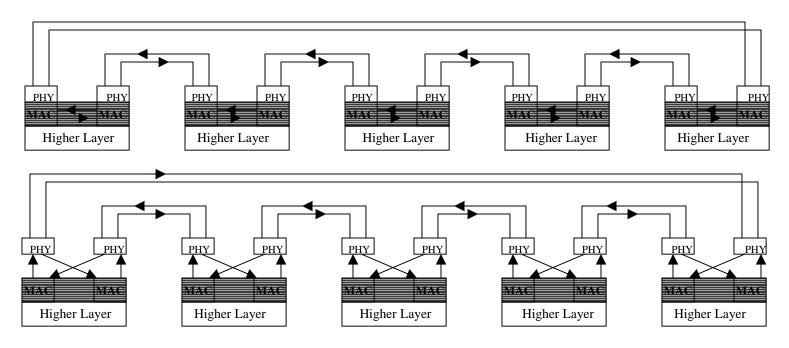
Control Plane

- •Dual buses with
- •Logical bridges for fairness control

Key RPR challenges

Value of the Ring

- Inherent resilient: redundant path (R)
- Existing network topology
- Full logical Mesh
- Inherent multicast/broadcast
- Port Consolidation
- No standing issue, finer granularity control

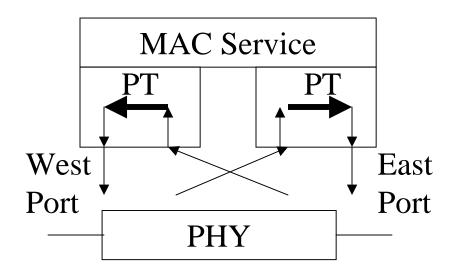

Technical Challenges need solution

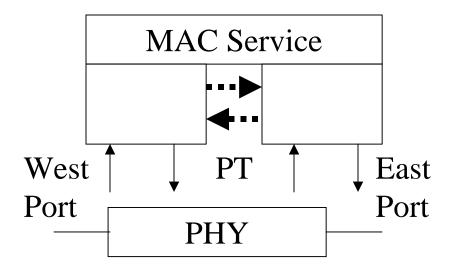
- High BW efficientcy
 - Destination removal
 - No reserved protection BW
- Shared medium: Collision Handling
 - Connectionless vs
 - No stranding granularity:
 - Dynamic Fairness
- Fairness
 - Parking lot problem
 - BW utilization
 - Response time vs stability
 - Unfairness: QoS

Market Acceptance

connection oriented dedicated channels BW reservation

Where is the RPR MAC?




- Keep the ring View in Mind. Ring is only part of the network
- Must solve collision domain
 - maximum ring performance
 - minimum design complexity

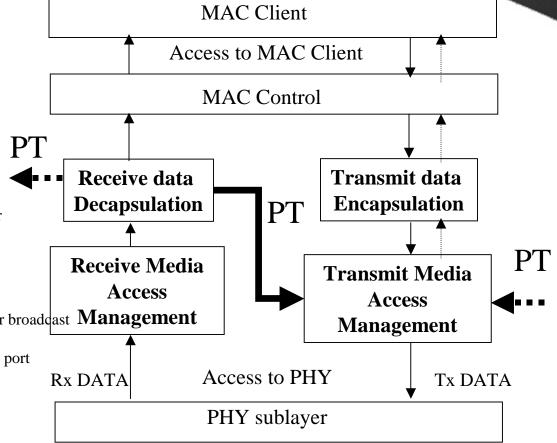
MAC Design

Method 1

Method 2

•RPR MAC an extension to point to point MAC

Components of a MAC


- •PLS layer required for PHY status signaling
- •A transmit media access management secondary port
- •Receive data not address to this station is not discarded but send to the TMAM or to a PT port
- •The transmit data header modification block process TTL
- •Transmit Media access management has the tandem buffer

For Frame Reception

- 1)Receives a bit-serial data stream from the Physical Layer
- 2)Presents to the MAC client sublayer frames that are either broadcast **Management** frames or directly addressed to the local station
- 3)PT all frames not addressed to the receiving station to PT port
- 4) passes control messages to Management /Cotrol
- 5)Header processing on PT

For Frame Transmission

- 1)Accepts data from the MAC client or Pass though port and constructs a frame
- 3)select which PHY to transmit
- 4)Presents a bit-serial data stream to the Physical Layer for transmission on the medium

Collision management

- Use buffer insertion in Transmit Media Access Management (TMAM)
 - NO SAR function
 - No large internal buffering, simpler to design
 - Scalable to Terabits,
 - Perform even at low ring rate
- Support cut through in Tandem Path
 - Minimizes locality dependent delay unfairness
 - Minimize latency
 - Provide "one hop" to destination node

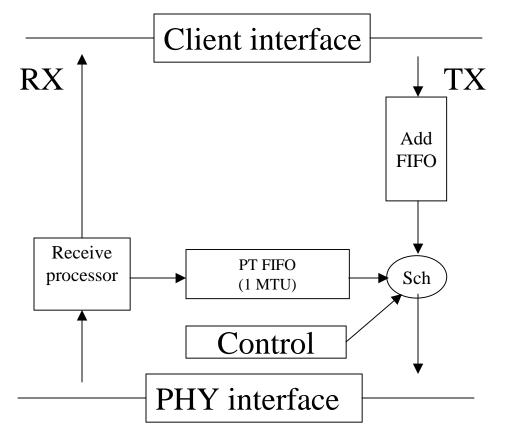
What else is needed to Complete multi-station System

- Need a Fair Access Control Protocol (TMAM)
 - Collision is handled locally
 - Source does not re-transmit
- Need a Congestion Management Protocol for all the stations
 - Local versus Global
 - High link utilization

Summary

RPR MAC:

- Support Shared Media Access
 - Handle local collision by buffer no SAR
- Support PassThrough (PT): Buffer Insertion Ring
 - Very Scalable design
 - Best ring delay/jitter performance
- Support a Fair Congestion Management Protocol
 - Multi-station shared medium
 - All equal stations have equal performance: goodput and delay
- Support Tandem performance monitoring
 - Shared medium not channelized



Questions and Answer

Back Ups

What is a Buffer Insertion Ring

Scheduler:
if (control_packet)
 send_control ()
else if (PT_packet)
 send PT_packet ()
else if (Add_packet)
 send Add_packet ()

Receive Processor:

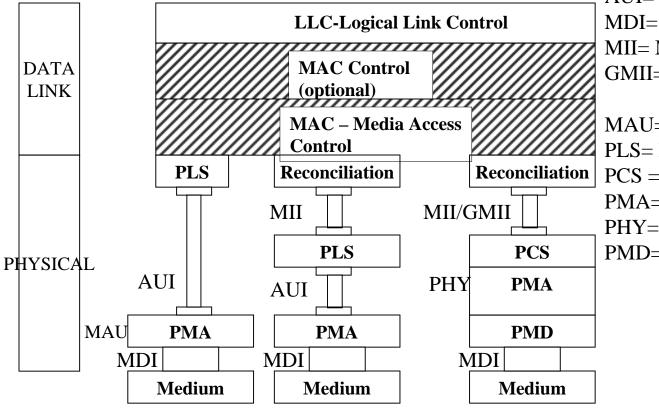
DA address check: receive SA address check: discard TTL check

TTL process HEC

- Enhanced original BIR with control message buffer
- OPE-RPR dual BIR with Congestion management+ perform monitor, node discovery, L2 protection

Buffer Insertion Ring's Attractiveness

- Enabled by high link rate
 - Low Transit delay
 - No need for SAR
- Scalable
 - Low silicon cost
 - Not concern with memory technology
 - Lower cost/bit
- No segmentation
- bounded Ring delay
- Supports Loss less media
- Shared media
 - Congestion Management required
 - starvation


Need Fairness Access Control for ring "Congestion"

Fairness

- Per SLA BW weighted fairness
- Per class per customer fairness
 - Regardless of traffic pattern
 - Regardless of position on the ring
 - Fairness: goodput and delay
- Support types Service Level Agreement
 - ? What is the customer SLA today: BW
 - ? What is the SLA of tomorrow: BW + QoS

OSI Reference Model/ LAN CSMA/CD Layers

Higher Layer

AUI= Attachment unit interface

MDI= Medium dependent interface

MII= Media independent interface

GMII= Gigabit Media independent interface

MAU= Medium Attachment Unit

PLS= Physical Layer Signaling

PCS = Physical Coding sublayer

PMA= Physical Medium Attachment

PHY= Physical Layer Device

PMD= Physical Medium Dependent