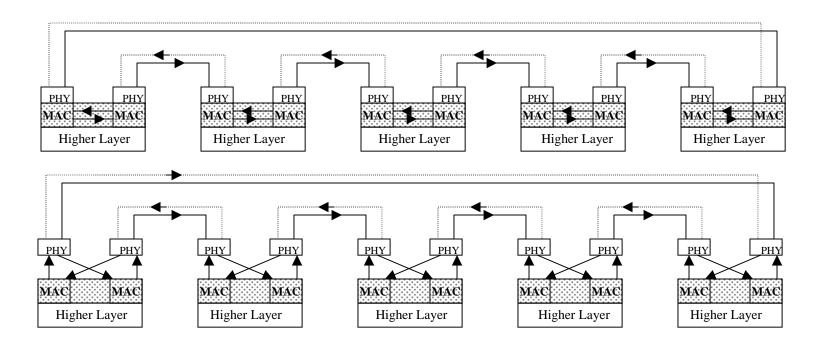
Transit Path Requirements

Harry Peng: hpeng@nortelnetworks.com

Nader Vijeh: nader@lanterncom.com

Content


- 1. Some Key RPR History
- 2. Media Access Management
 - Collision Objectives
 - Support for Bounded Transit Delay
 - Support for Lossless Ring
- 3. Scalability

General

Brief Backgound

- CSMA/RN: Old Dominion University Foudriat 1991
 - SAR
 - Spatial Reuse
- Buffer Insertion Ring: Graig Partridge
 - Transit delay effectively increases ring size
 - Bounded jitter
 - Delay issue: 10M
 - Fairness issue

The Ring

- Access Control between MAC client and MAC sublayer.
- MAC service layer must provide "fair" access to a shared medium.

Optimize Transit Path Design

- Impacts
 - 1. Delay and jitter
 - Customer data
 - Control messages
 - 2. Fairness
 - 3. Scalability of physical implementation

Support for Smallest Bounded Transit. Delay

- Bounded ring propagation delay
 - 1. Bounded Ring delay
 - = (fixed delay+ Variable Delay)

Fix delay = (equipment + x Km*fiber delay)

Variable delay = N*(per_node_delay(*MTU*))

N: number of transit nodes

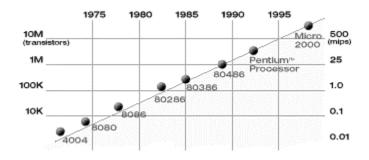
- Total delay: ingress buffering + ring access+ Ring delay
- 2. Reduces jitter variation:
- 3. Increase ring size
- Input to Fairness requirements: "equal" delay for all node in congestion span

Support for Lossless Medium

- By definition of 802 architecture the MAC layer is lossless
- Ring BW is the scarce resource.
 - More efficient to deliver the packet then discard in flight
- Loss in the network shall be handle by congestion management
 - Decision to discard due to congestion is outside of the scope of the MAC
- transmission error packet removal
 - Destination MAC removes the packet
 - Degrade medium: L2 protection

Why Support Scalable Architecture

- Doubling annually (70-150%)
- RHK: 200% per year
- J.P. Morgan and McKinsey, : 100% per year
 May 1996 –Oct 2000


Real numbers

- traffic growth 87% per year
- Capacity Growth 144% per year

Some Scalability Law's

Moore's Law

transistor density double every 18 Months.

2. Rock's Law (Authur Rock)

"A very small addendum to Moore's Law is Rock's Law which says that the cost of capital equipment to build semiconductors will double every four years"

3. Roy Bander observation:

within ten years we may run up against the laws of physics

Support for Cut-Through

- RPR Scalability: Scale at its own limitation
 - Minimum external requirements
 - Reduce cost
 - Reduce power
 - Better integration

Summary

RPR shall

- 1. Support cut though with
- 2. Minimize Jitter
- 3. Support lossless on the Ring
- 4. scalable MAC design