

Cyclic Demand Advertisement boosts RPR MAC Performance

Harmen R. van As, Arben Lila, Guenter Remsak, Jon Schuringa Vienna University of Technology, Austria

Overview

- Fairness Architecture
- Information Distribution
- Multiple Traffic Classes
- Performance
- Conclusions

Fairness Architecture

- Table holds all relevant source-destination flow information
- Table used as input for fairness algorithm
- Algorithm is executed each "calcInterval"

Fairness Information Distribution

- The tables are being updated by a fairness control packet
- Using one control packet with all information would result in a very big packet, therefore we use segmentation

Table Update

- New data is copied from control packet into local table
- Control packet header contains
 - Offset in table
 - Number of valid entries in packet

Control Packet Update (1)

Deleting Old Information

Control Packet Update (2)

Inserting New Information

Control Packet Update (3)

- Summary of actions upon arrival of control packet
 - Delete information that finished one round
 - Copy valid information into local table
 - Add local information to the control packet if:
 - There is place available, and
 - It is "my turn" to add
 - Schedule the packet forwarding

Fairness Control Packet Timing

- System parameters:
 - Calculation interval
 - Control packet size
 - Control packet hold time
- These parameters control reactiveness versus transmission overhead

Fairness and Traffic Classes (1)

 Σ L : all low-traffic flows

 Σ V : all non-guaranteed high-traffic flows

 Σ G : all guaranteed high-traffic flows

Fairness and Traffic Classes (2)

Throughput per Source Node

Saturated High and Low Traffic Sources 100km OC-12 Ring

$$C' = 0.9 * C$$

Performance Comparison

Saturated Low Traffic Sources 100km OC-12 Ring

Conclusions

- Pro-active mechanism
- The fairness algorithm assigns fare rates to all source-destination flows close to the maximum theoretical limit
- Fair rates for all traffic classes
- Supports multiple link capacities on a single ringlet
- Excellent throughput and delay performance