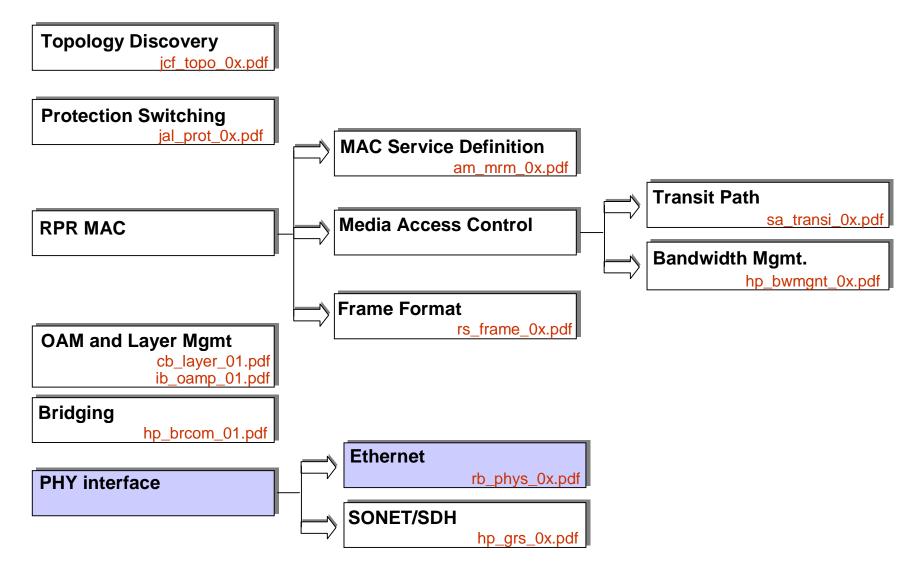


A Proposal To Use Ethernet PHYs for RPR


September 2001

Rhett Brikovskis – Lantern Communications
Henry Hsiaw – NEC
Vittorio Mascolo – Alcatel
Robin Olsson – Vitesse
Harry Peng – Nortel Networks
Raj Sharma – Luminous Networks
Frederic Thepot – Dynarc

Components of a complete RPR Proposal

Overview

- Objectives
- Overview of 10 Gigabit Ethernet Physical Layer
- RPR P-SAP Interface
- RPR Reconciliation Sublayer
- 10 Gigabit Ethernet PHYs
- RPR MAC-PHY Mapping
- Summary

Objectives

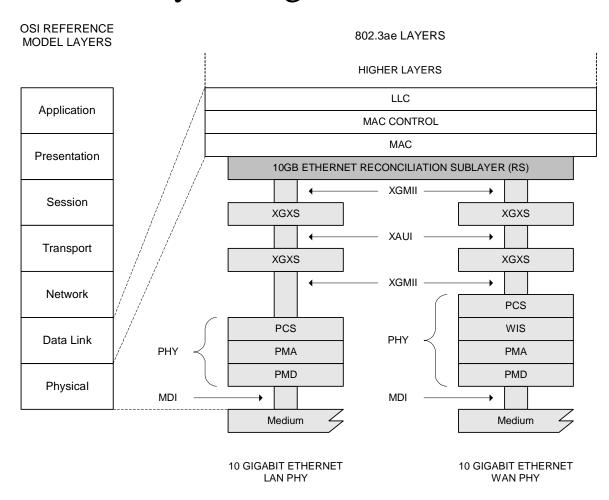
- Use a universal MAC-PHY logical interface compatible with various PHY types
- Define a Reconciliation Sublayer (RS) for RPR similar to that defined by P802.3ae
- Other than the RS, support the P802.3ae Physical Layer interfaces and sublayers with no changes.
- Support all seven LAN and WAN PHYs that P802.3ae is specifying.
- This proposal specifically addresses 10 GbE, but is intended to be extensible to other Ethernet speeds.

Overview of 10 Gigabit Ethernet

- P802.3ae (10 GbE) standard is scheduled for Mar 2002 completion.
- Standard is currently at Draft 3.2.
- Latest draft can be ordered at

http://standards.ieee.org/catalog/IEEE802.3.html

Overview of 10 GbE – SUBLAYERS


- 10 GbE Physical Layer consists of the following sublayers:
 - Reconciliation Sublayer (RS), specific to the 802.3 MAC-PLS interface.
 - 10 Gigabit Media Independent Interface (XGMII) optional.
 - XGMII Extender Sublayer (XGXS) and 10 Gigabit Attachment Unit Interface (XAUI) optional XGMII extender.
 - PHY [including Physical Coding Sublayer (PCS), optional WAN Interface Sublayer (WIS), Physical Medium Attachment (PMA) sublayer, and Physical Medium Dependent (PMD) Sublayer] 7 variants specified.
 - Medium Dependent Interface (MDI) not specifically defined.

Overview of 10 GbE – LAYER DIAGRAM

10 GbE Layer Diagram

LLC = LOGICAL LINK CONTROL MAC = MEDIA ACCESS CONTROL MDI = MEDIUM DEPENDENT **INTERFACE** PCS = PHYSICAL CODING **SUBLAYER** PHY = PHYSICAL LAYER **ENTITY** PMA = PHYSICAL MEDIUM **ATTACHMENT** PMD = PHYSICAL MEDIUM **DEPENDENT** WIS = WAN INTERFACE **SUBLAYER** XGMII = 10 GIGABIT MEDIA INDEPENDENT INTERFACE

RPR P-SAP (MAC-PHY) Interface

- Define a logical P-SAP interface between the RS (PHY) and the MAC similar to the 802.3 MAC-PLS interface.
- The interface is defined as a set of service primitives:
 - PHY_DATA.request
 - PHY_DATA.indicate
 - PHY_DATA_VALID.indicate
 - PHY_LINK_OK.indicate
 - PHY_READY.indicate
- The interface is octet-based.
 - Similar to the bit-based interface of 802.3
- The interface does not operate at a constant data rate.
 - The MAC frame does not include IPG—inserted by the RS.

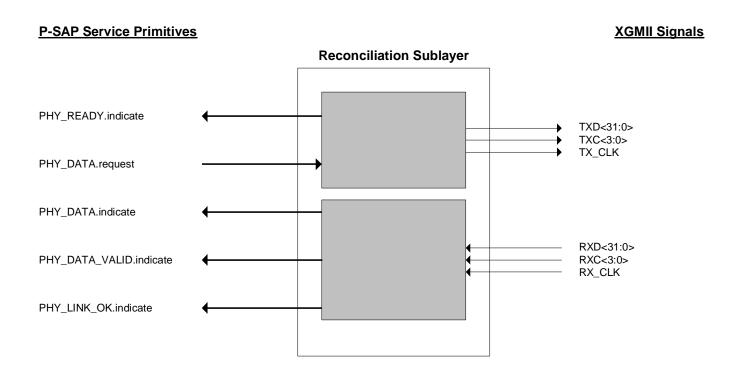
RPR P-SAP Service Primitives

The RPR P-SAP service primitives:

- PHY_DATA.request(OUTPUT_UNIT)
 - Defines the transfer of an octet of data from the MAC to the RS.
 - OUTPUT_UNIT={octet_of_data, DATA_COMPLETE}
- PHY DATA.indicate(INPUT UNIT)
 - Defines the transfer of an octet of data from the RS to the MAC.
 - INPUT_UNIT={octet_of_data}
- PHY_DATA_VALID.indicate(DATA_VALID_STATUS)
 - Indicates whether the parameter of PHY_DATA.indicate contains valid data.
 - DATA_VALID_STATUS={VALID, NOT_VALID}
- PHY_LINK_OK.indicate(LINK_STATUS)
 - Indicates whether the PHY indicates that the link is OK.
 - LINK_STATUS={OK, FAIL, DEGRADE}
- PHY_READY.indicate(READY_STATUS)
 - Indicates whether the PHY is ready to accept a new MAC frame.
 - READY_STATUS={READY, NOT_READY}

RPR RS For 10 GbE

 The Reconciliation Sublayer maps a logical RPR MAC frame to an Ethernet-compatible physical frame, and adds IPG:

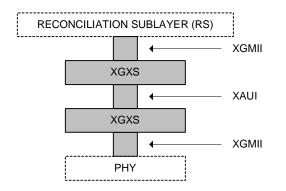


Reconciliation Sublayer Inputs and Outputs:

RS Functions

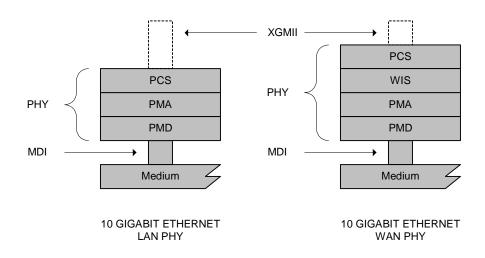
- The RS retains the following functions specified by P802.3ae, Clause 46:
 - Converts the logical P-SAP service primitives to/from electrical signals at the XGMII.
 - Map the first octet of Preamble to a Start control character, and align it to "lane 0" on the XGMII.
 - Map the first octet of IPG following a packet to a Terminate control character.
- For RPR, add/modify the following RS functions:
 - Generate IPG according to the rules specified in 802.3 (for ethernet, interframe gap period is generated by the MAC).
 - Modify the Link Fault Signaling behavior of the RS to allow dual-simplex operation

RS Link Fault Signaling


- Modify the Link Fault Signaling behavior—currently intended for a duplex point-to-point link:
 - P802.3ae treats the link as a full-duplex media—a fault in one direction needs to be signaled in the opposite direction, and MAC data transmission stops.
 - Layers in the PHY may be able to recognize link faults, and generate a Local Fault signal when faults exist. As defined by 10 GbE, when a Local Fault condition is received by the RS, it stops sending MAC data and continuously generates Remote Fault status in the other direction.
 - Similarly, when a Remote Fault condition is received, the RS stops sending MAC data and generates continuous Idle in the other direction.
- For RPR, redefine the RS fault behavior
 - RS receives Local Fault conditions and relays the information to the RPR MAC.
 - Opposite direction is unaffected.
 - Remote Fault signal is never generated—handled by MAC messaging.

10 GbE PHYs -XGXS/XAUI

 Support the P802.3ae XGMII Extender Sublayer (XGXS) and 10 Gigabit Attachment Unit Interface(XAUI) with no changes.


PHY = PHYSICAL LAYER ENTITY XAUI = 10 GIGABIT ATTACHMENT UNIT INTERFACE XGMII = 10 GIGABIT MEDIA INDEPENDENT INTERFACE

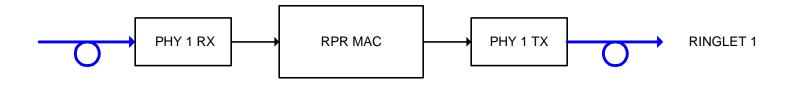
10 GbE PHYs – LAN/WAN PHYS

- P802.3ae Clauses 48-53 define the sublayers that implement two families of PHYs:
 - "LAN PHYs" operating at a data rate of 10.0 Gbps.
 - "WAN PHYs" operating at a data rate and format compatible with SONET STS-192c and SDH VC-4-64c.

MDI = MEDIUM DEPENDENT
INTERFACE
PCS = PHYSICAL CODING
SUBLAYER
PHY = PHYSICAL LAYER
ENTITY
PMA = PHYSICAL MEDIUM
ATTACHMENT
PMD = PHYSICAL MEDIUM
DEPENDENT
WIS = WAN INTERFACE
SUBLAYER

10 GbE PHYs – PHY VARIANTS

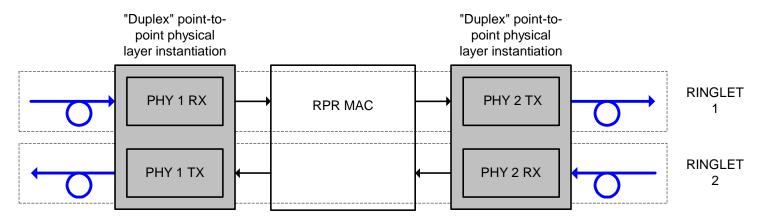
Seven PHY variants are defined:


Description	Reach/Fiber	10 GbE Designation	
		LAN PHY	WAN PHY
850 nm serial	~85 m/MMF	10GBASE-SR	10GBASE-SW
1310 nm serial	10 km/SMF	10GBASE-LR	10GBASE-LW
1550 nm serial	40 km/SMF	10GBASE-ER	10GBASE-EW
1310 nm WDM	10 km/SMF ~300 m/MMF	10GBASE-LX4	-

MAC-PHY Mapping - Direct Mapping

- RPR typically has more than one PHY connected to a MAC. Need to define a MAC to PHY (to media) mapping.
- MAC could be mapped directly to the corresponding PHY on a single RPR ringlet, but this isn't always optimum for RPR applications...

Direct Mapping Problems


- Direct mapping creates several significant issues for RPR applications:
 - Generally, this implies that the link to the preceding RPR station and the subsequent RPR station will use a single PHY type (same wavelength, same reach, etc). Extending this to the entire ringlet, all segments within a ringlet must use the same PHY type.
 - Most PHYs are intended for duplex operation—some include fault-processing and error-reporting capability that will be lost using direct mapping (ie, near-end and far-end status for the 10 GbE WAN PHY).

RPR MAC-PHY Mapping

- Propose the following optional MAC-PHY mapping to resolve the direct-mapping problems:
 - Retains duplex behavior and duplex fault-detection capabilities.
 - Allows mixing PHY types (different reaches) on different links.
 - Not proposing support for mixed PHY data rates.
- Implies pairs of opposing ringlets.

PHY NUMBERING, RING NUMBERING, AND RING DIRECTIONS ARE SHOWN FOR REFERENCE ONLY

Summary

- Define a P-SAP interface common to all RPR PHYs.
- Define a 10 GbE Reconciliation Sublayer for RPR to map the RPR P-SAP primitives to the P802.3ae PHYs and interfaces.
- Include the 10 GbE Physical Layer in the RPR standard by reference to P802.3ae (excluding the RS).
 - Support the optional XGMII with no changes.
 - Support the optional XGXS/XAUI with no change.
 - Support all seven PHYs with their associated sublayers with no changes.
- Assign RPR MAC-PHY mapping options to support:
 - Direct mapping of a PHY to a ringlet;
 - Mapping such that a PHY is mapped to two ringlets of a single ring segment.