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Introduction 
 
Proposed text that describes the LDPC coding design can be found in the subsequent 
sections of this contribution. This version of the text is based on the most recent working 
document for the ‘Physical Layer for Ultra Mobile Broadband (UMB) Air Interface 
Specifications’, 3GPP2 C. P0084-001.  
 
Proposed Text Changes to IEEE 802.20 Draft D0.1m 
 
5.1.7.3 Forward Error Correction 

Table 119. Types of Forward Error Correction for the Reverse and Forward Link 

Channels 

Channel Type of Coding 

Reverse Orthogonal Frequency Division Multiple 

Access Data Channel 

Rate-1/5 Turbo, LDPC 

or Rate-1/3 Convolutional 

 

Forward Data Channel 
Rate-1/5 Turbo, LDPC 

or Rate-1/3 Convolutional 

 

5.1.7.3.4 Low Density Parity Check (LDPC) Encoding 

LDPC encoding shall be used to encode the CRC-padded subpackets of the Forward Data 
Channel if the variable LDPCSupportedFL is set to ‘1’, and if the length of the packet 
received from the FTC MAC Protocol, as described in Section 4, is greater than or equal 
to MaxPacketSizeTurboSixInterlace or MaxPacketSizeTurboEightInterkace, for the case 
when the input FTC MAC packet corresponds to a six or eight interlace transmission 
respectively. No LDPC encoding shall be used for interlacing structures involving 
extended transmissions. The FTC MAC Prococol determines the interlacing structure 
being used for a given FTC MAC packet.  

LDPC encoding shall also be used to encode the CRC-padded subpackets of the Reverse 
Orthogonal Frequency Division Multiple Access Data Channel if the variable 
LDPCSupportedRL is set to ‘1’, and if the length of the packet received from the RTC 
MAC Protocol, as described in Section 4, is greater than or equal to 



MaxRLPacketSizeTurbo, except if this packet corresponds to an interlacing structure 
using extended transmissions. No LDPC encoding shall be used for interlacing structures 
involving extended transmissions. The RTC MAC Protocol determines whether or not a 
given packet is transmitted on an interlacing structure using extended transmissions. 

Given the CRC-padded subpacket of length k, denoted as Vin = (Vin
0 , Vin

1 , …, Vin
k-1 ), 

an LDPC encoder shall generate an output bit sequence Vout described in Section 
5.1.7.3.4.2.  Section 5.1.7.3.4.3 describes an efficient encoding procedure to compute 
Vout from Vin consistent with the definition in Section 5.1.7.3.4.2.    

5.1.7.3.4.1 Choice of Base Parity Check Matrix 

The LDPC code to be used is specified in terms of a base parity check matrix 
corresponding to different lifting orders. Different base parity check matrices Gi, 0 ≤ i < 6, 
are specified in 5.0. Note that these parity check matrices represent a lifted LDPC code, 
i.e., the entries of the matrices are not binary numbers but rather positive integers 
representing shift values. In addition, these base matrices contain “blank locations” which 
are denoted by solid bullets in 5.0. The interpretation of these matrices as an LDPC code 
will be described in 5.0. 

Each matrix Gi has associated values kB, nB, sB and Lmax which are also specified in 5.0. 
Here, kB and nB determine the size of the matrix G, while Lmax denotes the maximum 
lifting order. The number of columns and rows in G are given by nB and nB – kB 
respectively. The matrix Gi has associated kB = i+6. sB denotes the number of “state 
columns” in the matrix Gi and is equal to 3 for each of the matrices shown. A state 
column denotes elements of the codeword that are never transmitted. Each of the 
specified matrices has a maximum lifting order Lmax equal to 1024.  

Given the CRC-padded input sub-packet of length k, the lifting value L is chosen as 
log2L = ⎡log2(k/11)⎤. Further, kB is chosen as ⎡k/L⎤. Note that kB is at least equal to 6 
according to this procedure. Based on this, the matrix index i is chosen as i = kB – 6 = 
⎡k/L⎤ - 6. 

Henceforth, the index i will be dropped and the matrix Gi is referred to only as G.  

5.1.7.3.4.2 Forming the Parity Check Matrix and defining the Codeword 

The base matrix G chosen in the previous section shall be converted to a new base matrix 
G’, corresponding to the actual lifting order L rather than the maximal lifting order Lmax = 
1024. The matrix G’ has the same size as G. An entry g’ in G’ shall be determined from 



the entry g at the same location in G according to the formula g’ = ⎣gL/Lmax⎦. Blank 
locations in G shall remain blank locations in G’.  

The matrix G’ shall be converted to a matrix G’’ with twice the number of rows and 
columns as in G’. This shall be done by replacing each non-blank entry g’ in G’ by a 2x2 
matrix according to the following procedure: 

• If g’ is even, replace g’ by a 2x2 matrix with first row being given by [g’/2, 
“blank”] and the second row being given by [”blank”, g’/2].  

• If g’ is odd, replace g’ by a 2x2 matrix with the first row being given by 
[“blank”, (g’+1)/2] and the second row being given by [(g’-1)/2, ”blank”]. 

Blank locations in G’ shall be replaced by a 2x2 matrix containing entirely of blank 
locations in G’’. The matrix G’’ is the base parity check matrix of size (2(nB-kB), 2nB) 
with a lifting order of L/2.  

The base matrix G’’ shall be converted to a base matrix G’’’ by applying permutation Pi  
to the columns of G’’ and permutation Qi to the rows of G’’. The subscript i in Pi and Qi 
refers to the subscript Gi = G and thus takes values in 0,…,5.  

The first (leftmost) 2kB columns of G’’’ correspond to the information bits Vin and (kBL-
k) zero-padded bits.  The subsequent Ki columns (Ki depends on Gi) together with the 
first Ki rows form a lifted parity check matrix that consist of a degree 3 variable node 
(i.e., a column with three non-blank elements) followed by Ki – 1 degree 2 variable 
nodes. The degree 2 parity nodes form a dual-diagonal structure and the degree 3 
variable node closes the loop of the dual-diagonal structure. Each non-blank entry of 
degree 2 variable node in the dual diagonal structure has the lifting parameter zero, 
corresponding to identity matrix, on both edges. The loop closing edges on the degree 3 
node have the same lifting value “a”. The non-loop edge of the degree 3 node has lifting 
parameter zero corresponding to identity matrix so the lifting structure of this degree 3 
node is “a-0-a”. The remaining columns in G’’’ are degree 1 variable nodes. 

An example for the generation of G’, G’’, G’’’ is shown in 5.0. 

The base matrix G’’’ shall be converted to a binary parity check matrix H’’’ by replacing 
each non-blank entry in G’’’ by a L/2 x L/2 square matrix with binary entries. An entry 
g’’’ in G’’’ shall be replaced by a cyclic shift matrix with parameter g’’’. The cyclic shift 
matrix with parameter g’’’ is defined as the matrix whose value in the location (i,j) is 
given by ‘1’ if (i-j) mod L/2 = g’’’, and is given by ‘0’ otherwise. Here, the location (i,j) 



denotes the i’th row and j’th column. Blank locations in G’’’ shall be replaced by an L/2 
x L/2 all-zeros matrix.  

The LDPC encoder shall generate a bit sequence Vout from V’’’ such that H’’’V’’’ = 0 
where Vout = (Vout

0 , Vout
1 , …, Vout

n-1 ), where n = LnB – sBL - (kBL-k)  is a 
subsequence of V’’’ = (V’’’0,V’’’1,…,V’’’N-1), where N = LnB. To encode V’’’ the CRC-
padded input sub-packet of length k shall be extended to length kBL by inserting in the 
packet zp = kBL - k zeros so that the resulting packet has length kBL.  Denote again the 
original CRC-padded input sub-packet by Vin and denote the zero-padded input by a 
column vector VI =( VI

0, VI
1,… VI

k’-1)  where k’ = kBL.   The locations of the zeros in 
VI are as follows.  If VI

  is partitioned into 2kB blocks of size L/2, then the zeros are 
inserted at the ends of blocks 2kB-4 and  2kB-3.  Each block has an equal number of 
zeros if zp is even and block 2kB-3 has one more than block 2kB-4 if zp is odd.   

More precisely,define zp’ = ⎣zp/2⎦ and zp’’ = ⎡zp/2⎤. Let the notation VI
i and Vin

i denote 
the i’th element of VI and Vin respectively. The elements of the vector VI are given by: 

• VI
i = Vin

i for i < (2kB-3)(L/2)-zp’. 

• VI
i = 0 for (2kB-3)(L/2)-zp’ ≤ i < (2kB-3)(L/2). 

• VI
i = Vin

i-zp’ for (2kB-3)(L/2) ≤ i < (2kB-2)(L/2)-zp’’. 

• VI
i = 0 for (2kB-2)(L/2)-zp’’ ≤ i < (2kB-2)(L/2). 

• VI
i = Vin

i-zp for i ≥ (2kB-2)(L/2).  

An output vector V’’’ of length nBL shall be defined as the vector which satisfies the 
following conditions: 

• H’’’V’’’= 0, where the matrix multiplication H’’’V’’’ is over the binary field. 

• The first kBL entries of V’’’ are the same as the entries of VI. 

The vector Vout is obtained from V’’’ by permutation as follows.  V’’’ is of length nBL 
and may therefore be viewed as the concatenation of 2nB subsequences each of length L/2.  
The order of these subsequences  is permuted according to the inverse of the 
permutation Pi to produce the binary sequence V’’.  The binary sequence Vout is 
obtained from V’’ by bit-wise interleaving pairs of subsequences from V’’.  More 
specifically,   

Vout
jL+j’ = V’’ jL +(L/2)(j’ mod 2) + ⎣j’/2⎦  

where j = 0,1,…,nB-1  and j’ = 0,1,…,L-1. 



5.1.7.3.4.3 Efficient LDPC Encoding  

In this section an efficient encoding method is presented according to which the sequence 
V’’’, as defined in Section 5.1.7.3.4.2, is computed from Vin.  The method will describe 
a procedure to generate the sequence V’’’. Recall that in Section 5.1.7.3.4.2 it was 
described how to produce the matrix G’’’ from the matrix G (which is also Gi). Efficient 
encoding of Vin to a sequence V’’’ satisfying H’’’V’’’=0 is described. 

The computation of V’’’ given VI is particularly simple due to the structure H’’’ inherits 
from G’’’.   The lifted parity check matrix H’’’ takes the form 

⎥
⎦

⎤
⎢
⎣

⎡
=

IM
M

H
2

1 0
'''  

where, 1

A B T
M

C D E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 is a (L/2)Ki x (L/2) (kB+Ki) matrix with, T is lower triangular, 

B T
D E
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is invertible and the D is L/2 × L/2. The encoding procedure is composed of 

two stages. Let 1 2 3( , , , )c s p p p=  be a codeword where s  denotes systematic part, 1 2,p p  
and 3p  are parity parts. In first stage, a part of codeword 1 2,p p  is obtained using 1M  
depending on the systematic information s . In second stage, the remaining part of the 
codeword 3p  is obtained by simple single parity-check coding using 2[ ]M I . The 
whole procedure for encoding is as follows. 
 

Step 1) Obtain 
0

B T
φ
⎡ ⎤
⎢ ⎥
⎣ ⎦

 from Gaussian elimination on 
B T
D E
⎡ ⎤
⎢ ⎥
⎣ ⎦

, where 

1ET B D Iφ −= + = .  
Step 2) compute TAs and TCs . 

Step 3) compute 1 Ty T As−=   

Step 4) compute 1
T Tp Ey Cs= + . 

Step 5) compute 2
Tp  using ( )1

2 1
T T Tp T As Bp−= +   

Step 6) compute 3
Tp  by single parity-check coding using 2[ ]M I . 

A sequence V’’’ satisfying H’’’V’’’=0 is obtained from Step 1)~Step 6). The sequence 
Vout is then obtained from V’’’ by permutation as described in Section 5.1.7.3.4.2. 



5.1.7.3.4.4 Truncation 

The truncation operation shall be carried out for Forward Link packets only. For Reverse 
Link packets, the output w’’ of the truncation operation shall be equal to w’. 

The truncation operation depends on the packet size NPACKET_BITS of the packet received 
from the FTC MAC Protocol, and the variables MaxRateOneFifthPacketSize, 
MaxRateOneThirdPacketSize and MaxRateOneHalfPacketSize. 
MaxRateOneFifthPacketSize is equal to one of the parameters 
MaxRateOneFifthPacketSizeEightInterlaceLDPC or 
MaxRateOneFifthPacketSizeSixInterlaceLDPC, depending on whether the Forward Data 
Channel packet is transmitted using an eight interlace HARQ structure or a six interlace 
HARQ structure. MaxRateOneThirdPacketSize is equal to one of the parameters 
MaxRateOneThirdPacketSizeEightInterlaceLDPC or 
MaxRateOneThirdPacketSizeSixInterlaceLDPC, depending on whether the Forward Data 
Channel packet is transmitted using an eight interlace HARQ structure or a six interlace 
HARQ structure. MaxRateOneHalfPacketSize is equal to one of the parameters 
MaxRateOneHalfPacketSizeEightInterlaceLDPC or 
MaxRateOneHalfPacketSizeSixInterlaceLDPC, depending on whether the Forward Data 
Channel packet is transmitted using an eight interlace HARQ structure or a six interlace 
HARQ structure. The FTC MAC protocol determines which HARQ interlacing structure 
is used for transmitting the Forward Data Channel packet. 
MaxRateOneFifthPacketSizeEightInterlaceLDPC, 
MaxRateOneFifthPacketSizeSixInterlaceLDPC, 
MaxRateOneThirdPacketSizeEightInterlaceLDPC, 
MaxRateOneThirdPacketSizeSixInterlaceLDPC, 
MaxRateOneHalfPacketSizeEightInterlaceLDPC, and 
MaxRateOneHalfPacketSizeSixInterlaceLDPC are configuration attributes of the FTC 
MAC protocol.  

When NPACKET_BITS < MaxRateOneFifthPacketSize, the sequence w’ shall not be 
truncated.  

When MaxRateOneFifthPacketSize ≤ NPACKET_BITS < MaxRateOneThirdPacketSize, the 
sequence w’ shall be truncated to length 3kBL, i.e., all elements with indices greater than 
or equal to 3kBL shall be deleted.   



When MaxRateOneThirdPacketSize ≤ NPACKET_BITS < MaxRateOneHalfPacketSize, the 
sequence w’ shall be truncated to length 2kBL, i.e., all elements with indices greater than 
or equal to 2kBL shall be deleted.  

When MaxRateOneHalfPacketSize ≤ NPACKET_BITS, the sequence w’ shall be truncated to 
length 3kBL/2, i.e., all elements with indices greater than or equal to 2kBL shall be deleted.  
The output of the truncation operation shall be denoted by w’’. 

5.1.7.3.4.5 Deletion of Blank Entries 

The output w’’ of the truncation operation shall further be shortened by deleting all the 
blank entries. These blank entries correspond to the ‘0’ entries that were added in order to 
generate the input vector vI. As a result, the output w of the shortening operation is 
smaller in length as compared to the vector w’’ by an amount equal to (kBL-k).  

The vector w shall be the output of the LDPC encoding operation. 

 

5.1.7.4 Channel Interleaving  

… 
Channel interleaving follows the convolutional or turbo encoding, and consists of a bit-
demultiplexing operation followed by a bit permuting operation. No channel interleaving 
shall be carried out following the LDPC encoding operation.  
 
… 

5.5 PHYSICAL LAYER APPENDIX: PARITY CHECK MATRICES FOR THE  LDPC CODE 

5.5.1 Base Parity Check Matrices 
The different base parity check matrices Gi are as shown below.  
 
 
 
 
 
 
 
 
 



G0: kB = 6, nB = xxx, sB = 3, Lmax = 1024. 
1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

110 680 424 180 0 0

702 768 863 0 0 0

360 259 652 753 0 0

402 948 0 0

318 0 767 0

154 1023 768 0

885 323 0

617 220 0

799 519 669 0

900 72 669 0

574 253 352 0

848 280 920 0

548 928 355 0

17 376 147 0

795 823 473 0

519 424 712 0

952 449 0

887 798 0

256 93 348 0

492 856 0

589 1016 705

26 166

525 584 845

10 331

125 310

239 641

557 609 448



G1: kB = 7, nB = xxx, sB = 3, Lmax = 1024. 
1 1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

556 1023 480 944 0 0

430 916 0 767 0

295 907 87 0 0

809 501 1023 768 0

954 710 0 0

558 360 0 0

275 0 0 0

935 568 0 0

195 989 0

550 728 0

532 26 698 0

664 862 709 0

938 440 978 0

394 995 17 0

538 175 117 0

428 105 929 0

30 264 832 0

514 410 978 0

487 249 204 0

526 126 906 0

10 90 889 0

126 714 0

312 624 0

954 302 63

33

524 752 227

647 346

918 602

14 131 816

216 103

893 771



G2: kB = 8, nB = xxx, sB = 3, Lmax = 1024. 
1 1 1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

719 328 939 579 765 0 0

955 1019 365 503 882 0 0

495 720 413 0 0

63 163 0 767 0

629 319 818 0 0

247 412 1023 768 0

928 0 0 0

32 190 0

243 596 0

880 833 329 0

224 840 208 0

479 222 17 0

296 856 651 0

926 211 167 0

764 166 387 0

238 925 405 0

850 922 852 0

412 96 627 0

536 443 773 0

551 91 400 0

567 242 205 0

556 157 27 0

10 886 0

831 252 11 0

755 623 867 0

608 72 0

60 516 772

289 906 292

600 48

565 458

428 6 413

958 131

577 146

734 257 619

612 634



G3: kB = 9, nB = xxx, sB = 3, Lmax = 1024. 
1 1 1 1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

854 545 457 0 0

282 1001 0 767 0

984 677 794 0 0

169 618 313 0 0

129 699 370 0 0

156 934 0 0 0

923 840 117 0 0

538 243 83 0 0

464 1009 1023 768 0

259 434 0

274 901 1004 0

640 997 988 0

683 54 385 0

679 253 646 0

47 418 332 0

343 26 175 0

514 671 496 0

972 433 993 0

235 223 885 0

555 943 892 0

696 574 233 0

975 510 815 0

5 818 898 0

350 159 0

36 397 807 0

492 502 467 0

162 631 0

608 944 599 0

394 630 0

48 576

952 521 455

304 300

982 602 915

740 710

783 491 307

431 275

802 46 83

556 239

812 72



G4: kB = 10, nB = xxx, sB = 3, Lmax = 1024. 
1 1 1 1 1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

892 146 990 0 767 0

350 577 321 15 0 0

242 771 989 1023 768 0

627 183 532 0 0

614 847 0 0 0

456 923 264 0 0

664 365 587 0 0

767 882 392 0 0

124 908 915 0 0

815 184 0

476 804 646 0

6 735 10 0

512 95 710 0

949 94 860 0

191 452 860 0

455 231 802 0

489 984 736 0

555 536 777 0

527 612 534 0

21 227 461 0

897 119 618 0

530 581 453 0

977 76 139 0

407 302 832 0

616 233 419 0

294 500 831 0

994 254 0

278 1001 589 0

4 69 141 0

956 629 420 0

422 541 0

816 663 475 0

349 1010 663

94 992

354 776 356

995 494

271 911 178

7 393

535 888 24

854 792

792 143

170

427 900 106



G5: kB = 11, nB = xxx, sB = 3, Lmax = 1024. 
1 1 1 1 1 1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

572 998 930 221 0 0

340 579 789 0 767 0

368 46 358 978 0 0

921 128 589 32 0 0

757 230 714 823 0 0

729 583 1023 768 0

997 211 438 0 0

418 127 0 0 0

598 570 943 0 0

847 386 0

371 107 268 0

119 226 30 0

355 74 27 0

310 74 15 0

394 952 73 0

55 95 768 0

912 973 727 0

697 518 709 0

226 568 330 0

41 113 948 0

31 698 549 0

262 256 243 0

574 60 651 0

946 464 986 0

684 243 20 0

541 250 136 0

265 559 896 0

699 43 320 0

24 47 193 0

479 995 0

44 855 57 0

150 720 179 0

168 140 985 0

689 429 0

515 385 75 0

75 396 1017

31 388

226 123 612

509 38

726 430 767

838 277

383 745

772 267

270 297

743 598

66 373

455 973 737

 

5.5.2 Generation of the Matrices Gi’, Gi’’, Gi’’’ 
The following example shows how the matrix G0 gets converted to matrices G0’, G0’’ and 
G0’’’. 

 

 

 

 

 

 

 

 

 

 

 



G0 
1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

110 680 424 180 0 0

702 768 863 0 0 0

360 259 652 753 0 0

402 948 0 0

318 0 767 0

154 1023 768 0

885 323 0

617 220 0

799 519 669 0

900 72 669 0

574 253 352 0

848 280 920 0

548 928 355 0

17 376 147 0

795 823 473 0

519 424 712 0

952 449 0

887 798 0

256 93 348 0

492 856 0

589 1016 705

26 166

525 584 845

10 331

125 310

239 641

557 609 448



G0’ : Lifting size - 512 
1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

55 340 212 90 0 0

351 384 431 0 0 0

180 129 326 376 0 0

201 474 0 0

159 0 383 0

77 511 384 0

442 161 0

308 110 0

399 259 334 0

450 36 334 0

287 126 176 0

424 140 460 0

274 464 177 0

8 188 73 0

397 411 236 0

259 212 356 0

476 224 0

443 399 0

128 46 174 0

246 428 0

294 508 352 0

13 83 0

262 292 422 0

5 165

62 155

119 320

278 304 224



G0’’ 
1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

28 170 106 45 0 0

27 170 106 45 0 0

176 192 216 0 0 0

175 192 215 0 0 0

90 65 163 188 0 0

90 64 163 188 0 0

101 237 0 0

100 237 0 0

80 0 192 0

79 0 191 0

39 0 192 0

38 255 192 0

221 81 0

221 80 0

154 55 0

154 55 0

200 130 167 0

199 129 167 0

225 18 167 0

225 18 167 0

144 63 88 0

143 63 88 0

212 70 230 0

212 70 230 0

137 232 89 0

137 232 88 0

4 94 38 0

4 94 37 0

199 206 118 0

198 205 118 0 0

130 106 178 0

129 106 178 0

238 112 0

238 112 0

222 200 0

221 199 0

64 23 87 0

64 23 87 0

123 214 0

123 214 0

147 254 176

147 254 176

7 42

6 41

131 146 211

131 146 211

3 83

2 82

31 78

31 77

60 160

59 160

139 152 112

139 152 112



G0’’’ 
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

28 170 106 45 0 0

27 170 106 45 0 0

176 192 216 0 0 0

175 192 215 0 0 0

90 65 163 188 0 0

90 64 163 188 0 0

101 237 0 0

100 237 0 0

80 0 192 0

79 191 0 0

39 192 0 0

38 255 192 0

221 81 0

221 80 0

154 55 0

154 55 0

200 130 167 0

199 129 167 0

225 18 167 0

225 18 167 0

144 63 88 0

143 63 88 0

212 70 230 0

212 70 230 0

137 232 89 0

137 232 88 0

4 94 38 0

4 94 37 0

199 206 118 0

198 205 118 0 0

130 106 178 0

129 106 178 0

238 112 0

238 112 0

222 200 0

221 199 0

64 23 87 0

64 23 87 0

123 214 0

123 214 0

147 254 176

147 254 176

7 42

6 41

131 146 211

131 146 211

3 83

2 82

31 78

31 77

60 160

59 160

139 152 112

139 152 112
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