
Exploring System Noise, η_0 , for Usage in COM

Richard Mellitz, Samtec

Vancouver, BC, Canada, March 2019

η_0 is defined a the pins of the receiver

Background

- The inclusion of system noise was indicated on slide 7 of the original COM proposal mellitz_01_071, "Time-Domain Channel Specification: Proposal for Backplane Channel"
- □ Characteristic Sections.
 - It was broadband gaussian source called σ_r .
- □ Measurement was provided in ran_02_0712, "Considering Alien Noise"
 - Approximately 1 mV of signal was suggested
 - EMI inducted noise on well design systems was ruled out from proximally inducing highly tuned EMI noise near differential signals
- □ 1 mv σ_r was first introduced in IEEE P802.3bj[™]/D1.4, 21st February 2013
 □ 5.2e-8 V²/GHz adopted for η₀ in IEEE P802.3bj[™]/D2.3, 11th October 2013

How many mV?

$$\sigma = \sqrt{\sum_{0}^{f_b} \eta_{0 \,\Delta f}} \,,$$

Where Δf and f_b , the baud rate, are in GHz

□ For IEEE802.3by, .3by, and.3bm

• Given f_b = 25.781 GHz & η_0 =5.2e-8 V²/GHz σ =1.228 mV

LEEE802.3cd

• Given f_b = 26.5625 GHz & η_0 =1.64e-8 V²/GHz σ =.66 mV

□ Presently for 100 G IEEE8.3ck

• Given f_b = 53.125 GHz & η_0 =8.2e9 V²/GHz σ =.66 mV

How is it used in COM

The system noise is filtered by the Rx and CTF filters to create an broadband AWGN which is convolved with all the other noise sources

$$\sigma_N^2 = \eta_0 \int_0^\infty |H_r(f)H_{ctf}(f)|^2 df$$
(93A-35)

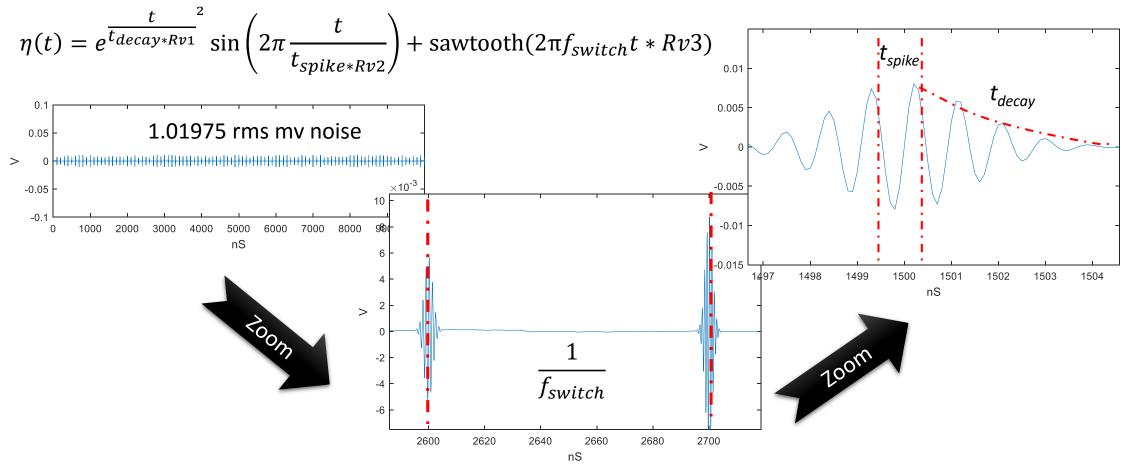
 \square η_0 at 8.2e-9 V²/GHz can account for up to 2 dB of COM 100 Gbs PAM-4 in 28 dB channels

 \Box Maybe we should revisit η_0

See wu_3ck_adhoc_01_022719.pdf

System noise

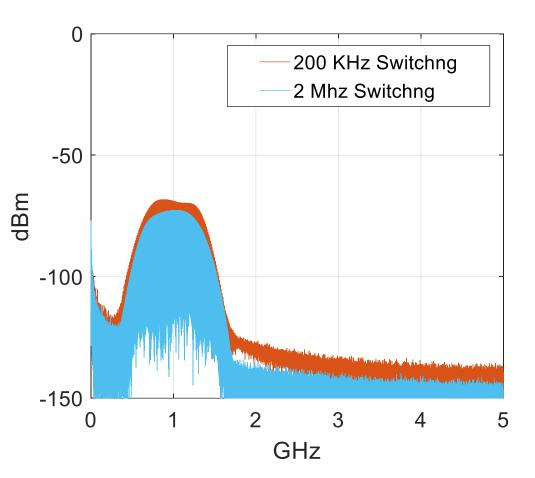
Power supply noise on a differential line can be modeled as


- A low frequency sawtooth wave and
- A higher frequency sine wave enveloped with decaying exponentials at the sawtooth transitions
- The higher frequency proportion is likely caused by random nature of system di/dt loading at the inductor switching transistor in a power supply.

Tact

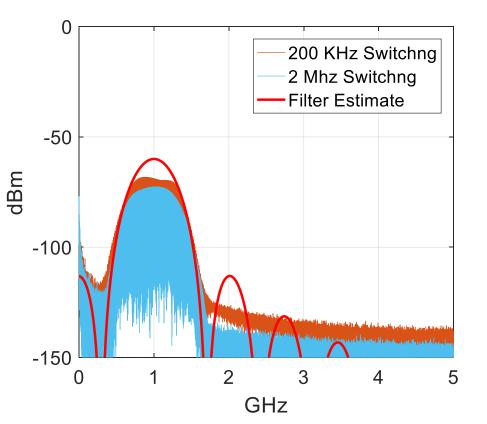
- Experiment to recreate the 1 mv RMS
- Propose a waveform which might be represented of a mV RMS system noise
- Determine the power spectral density
- Propose a filter added to equation 93A-35 for the system noise power spectral density, *He(f)*

Simple noise model


Each switch cycle has this form where Rv1, Rv2, and Rv3 are randomizing variables modeling load variations

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Power Spectral Density (PSD) results


□ For □ t_{switch} = 200 KHz and 2 MHz □ t_{spike} = 1 ns □ t_{delay} = 2 ns

Now we add to the plot: an η_0 PSD filter estimate (adjusted for 1 mV RMS of the original signal)

Filter estimate by comparing to PSD of the noise

$$H_e(f) = sinc \left(\frac{f - f_{spike}}{f_{spike}} \sqrt{2}\right)^2$$

Recommendation

Go back to the original, η_0 =5.2e-8 V²/GHz

But add system noise filter, $H_{e}(f)$, to equation (93A-35)

$$H_e(f) = sinc\left(\frac{f - f_{spike}}{f_{spike}}\sqrt{2}\right)^2$$
, where f_{spike} =1 GHz

$$\sigma_{N}^{2} = \eta_{0} \int_{0}^{\infty} |H_{r}(f)|^{2} df$$
(93A-35)

Moving Forward

 \Box Use the $H_e(f)$ recommendation as a starting point

- Power spectral density measurement of system noise would be useful
- □ The not a trivial measurement!
 - Instrument ground common mode noise can be an error term
 - Self-device noise is an error term which need to be removed
 - This noise is already included in SNDR and RIT
 - Sufficient loading activity in the reset of system is required