

# High Speed NRZ and PAM optical modulation using CMOS Photonics

Bipin D. Dama, Mark Webster, Kalpendu Shastri, David Piede, Vipul Bhatt, Ray Nering – Lightwire, Inc.

> IEEE 100GNGOPTX Study Group March 2012



- Mach–Zehnder Interferometer (MZI) in CMOS Photonics
- Simulation and measurement results for NRZ optical modulation
- > 40G & 100G PAM optical modulation using CMOS photonics

- » Additional Reference Material
  - CMOS Photonics Introduction
  - Mach Zehnder Interferometer (MZI) overview

# Lightwire's <u>Mach–Zehnder Interferometer</u> (MZI)



- » MZI -> MOS capacitor
- » MZI Driver -> CMOS Inverter
- Well characterized using standard CMOS electrical IC techniques

LIGHT

- > Use of standard IC design tools to design and simulate
- Excellent match between simulation and measurement – just like CMOS
- Leverage mature IC technology -> results in predictable performance
- >> Use of low cost reliable CW laser

Converting an electrical signal to an optical signal is as simple as a CMOS inverter charging & discharging a MOS capacitor

# Tx Optical Eye Simulation vs. Measurement LIGHTWIRE



- First pass matching results at 10Gbps & 28Gbps
- Extinction Ratio and Rise Time / Fall Time are adjustable design parameters

#### **Excellent correlation between simulation and measurement**



- » Digital drivers driving 1 or 0
- » Lithography defined MZI
- » High speed digital

#### No magic here, straightforward high speed digital design in CMOS

# CMOS Photonics enables design confidence LIGHTWIRE

- » ...Just like CMOS electronics
- This is a new approach to optics design, but no different than traditional CMOS design
- » CMOS Photonics same CMOS design process
- » Library is well characterized that results in high confidence correlation between simulation of design and actual performance

Successfully demonstrated 28+Gbps NRZ optical modulation Rise Time / Fall Time < 12ps, ER > 8dB

# Achieving PAM Signaling in MZI (e.g. PAM-4) LIGHTWIRE



Segmented MZI + Simple digital drivers provide built-in DAC function for PAM Much simpler digital drivers -> PAM optical outputs

# Segmented MZI concept extended to PAM-16 LIGHTWIRE



Single segmented MZI modulator provides all 16 PAM levels



## **TX Optical PAM-16 Realization**

#### PAM16 @10 Gbaud (40Gbps) \*\*

### PAM 16 @ 28 Gbaud (112 Gbps)



- **10G TX Optical Simulations >>**
- **Design completed >>**
- Measurement results soon **>>**



IC Size:

~2mm x ~1mm

IC includes PAM-16 MZI + more structures **>>** 





- **28G Simulations >>**
- Further design optimization **>>** possible



- SiPhotonics enable very efficient implementation of Multi-level modulation
- » Excellent correlation between simulation and measurements
- » High speed modulation using CMOS photonics shown
  - Required rise time / fall time performance demonstrated
- Simulation show 100G PAM-16 optical modulation realizable using current technology
- » 40G PAM-16 optical modulation silicon measurement results soon



**Additional Reference Slides** 





CMOS Photonics IC Platform leverages existing multi-billion dollars of investment, Infra-structure and discipline of the CMOS IC industry to manipulate both Electrons & Photons to achieve desired Opto-Electronics functions using External DC Sources





# CMOS Photonics Modulator

By controlling the voltages on terminals, MOS Transistor controls the flow of electrons from source to drain. Today, 100s of millions can be placed on a single electronics chip. By controlling the voltages of the two arms of the modulator, one controls the flow of photons from source to drain with one major difference – Photons cannot be stopped and hence the unwanted will go to Drain. A large numbers of these can be integrated on a single chip.

V-

Just like the transistor is the basic building block for all ICs, Broadband Modulator is the basic building block for all high speed optical interconnects

## Mach Zehnder Interferometer (MZI) Modulator overview





- > Control left and right arms to be in phase (optical 1) and out of phase (optical 0) by applying voltage across the length of the MZI
- Phase v/s output optical power in raised cosine relationship
- >  $V\pi L\pi =$  Measure of voltage and length required to get full  $\pi$  phase shift MZI deployed in optical systems for over 20 years



- »  $V\pi L\pi < 2 Vmm$
- What does this mean?
  - Between two arms we need < 1Vmm
  - Enables smaller length modulators (in 100s of microns)
  - Enables cmos compatible drive voltages (< ~1V)</li>
  - Implemented in CMOS process
- > Uses CW (DC) lasers rather than direct modulation

### **CMOS** photonics enables small size, low power MZI modulators