100G MMF Reach Objective

John Petrilla: Avago Technologies March 2012

Outline \& Acknowledgements

- Conclusions
- Block Diagrams
- Economic Feasibility
- Scaling 40GBASE-SR4 for a low-cost-low-power 100G SR4
- Reach and equalization

Acknowledgements

- The Kolesar Kalculator (Kolesar_Kalculator_2012_02_29.xls) was used to provide comparative total data center costs for various scenarios of relative module costs and supported reaches.
- The cable plant model and transceiver relative cost model was a collaboration with Doug Coleman (Corning).
- The link model, 32GFC 3T FFE v1a, was developed by David Cunningham (Avago Technologies).

Conclusions

-A low-cost-low-power transceiver based on unretimed interfaces and no optical link equalization does not appear technically feasible at this time.
-Transceivers based on retimed interfaces and some level of optical link equalization supporting OM4 reaches in the range of 70 m to 100 m with relative cost factors in the range of 0.7 x to 1.0 x SR10 appear to offer a total cost advantage relative to the incumbent case of SR10 and LR4 for server-to-switch segments with no intermediate reach SMF option and for all segments if an intermediate reach SMF option such as PSM4 is available and included.
-OM4 reaches above 50 m are expected to require some level of equalization while above 100 m may not be equalized by a 3-tap FFE or DFE (3,1).
-The MMF reach objective should not be more than 100 m of OM4.
-The effect of FEC implemented outside the transceiver in not included in the above conclusions. If available and implemented outside the transceiver, the link would appear to have a larger signal budget and noise penalties would be reduced. Beneficial effects would include pushing out the noise walls that are limiting the optical link equalizers.

100G 25G/Lane Parallel MM Transceiver: Description

-NRZ modulation and 64b/66b encoding are assumed for both electrical and optical signals.
\cdot MPO connectors are assumed for the optical interface.
-At 10G simple Tx input equalization and/or Rx output equalization (de-emphasis) may appear.
-At 25G electrical interfaces are expected to require equalization and, at least initially, retiming.
-At 25 G some level of equalization is expected for the optical channel elements.

100G 10G \& 25G/Lane MMF Transceivers Comparison

100GBASE-SR10 (10x10G) is shown to assist comparisons.
CXP is the assumed form factor for 100GBASE-SR10.
QSFP+ or CFP4, depending on power consumption and thermal management, are the assumed form factors for 100GBASE-SR4.
Comparative factors relative to 100GBASE-SR10 include lane count decrease, signal rate increase and added features.
The lower lane/channel count is expected to simplify host board layout and enable higher aggregate channel count.

Kolesar Kalculator Analysis (1 of 5)

Case		Relative 100G Ch. Cost	Reach		
\#	Items		OM3	OM4	OS2
1	$\begin{aligned} & \text { SR10 } \\ & \text { LR4 } \end{aligned}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	100 m	150 m	10 km
2	$\begin{aligned} & \text { SR4 } \\ & \text { LR4 } \end{aligned}$	$\begin{aligned} & 1.3 \\ & 10 \end{aligned}$	70 m	100 m	10 km
3	$\begin{aligned} & \text { SR4 } \\ & \text { LR4 } \end{aligned}$	$\begin{aligned} & 1.0 \\ & 10 \end{aligned}$	70 m	100 m	10 km
4	$\begin{aligned} & \text { SR4 } \\ & \text { LR4 } \end{aligned}$	$\begin{gathered} 0.70 \\ 10 \end{gathered}$	70 m	100 m	10 km

Relative cost factors in the above table are not estimates but provided as 'what-if' factors.

The above chart shows data center costs comparisons generated with the Kolesar Kalculator for the reach distributions built into the calculator. Four 100G/Ch. cases were analyzed. See above table for definitions.
Case 1 is the incumbent case where only 100GBASE-SR10 and 100GBASE-LR4 exist.
Cases 2,3 \& 4 replace SR10 in Case 1 with SR4. SR4 OM3 and OM4 reaches are in discussion. The values used here are for example. Here relative costs of SR4 are considered.
For the server-to-switch segments where the relative cost of LR4 is not a factor, SR4 offers little value if its relative cost approaches $1.3 \times$ SR10 for the example OM3 \& OM4 reaches.

Kolesar Kalculator Analysis (2 of 5)

Case		Relative 100G Ch. Cost	Reach		
\#	Items		OM3	OM4	OS2
1	$\begin{aligned} & \text { SR10 } \\ & \text { LR4 } \end{aligned}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	100 m	150 m	10 km
2	$\begin{aligned} & \text { SR4 } \\ & \text { LR4 } \end{aligned}$	$\begin{aligned} & 1.3 \\ & 10 \end{aligned}$	70 m	100 m	10 km
3	$\begin{aligned} & \text { SR4 } \\ & \text { LR4 } \end{aligned}$	$\begin{aligned} & 1.3 \\ & 10 \end{aligned}$	100 m	140 m	10 km
4	$\begin{aligned} & \text { SR4 } \\ & \text { LR4 } \end{aligned}$	$\begin{aligned} & 1.3 \\ & 10 \end{aligned}$	140 m	200 m	10 km

Relative cost factors in the above table are not estimates but provided as 'what-if' factors.

Total Cost Comparison

The above chart shows data center costs comparisons generated with the Kolesar Kalculator for the reach distributions built into the calculator. Four 100G/Ch. cases were analyzed. See above table for definitions.
Case 1 is the incumbent case where only 100GBASE-SR10 and 100GBASE-LR4 exist.
Cases $2,3 \& 4$ replace SR10 in Case 1 with SR4. Here SR4 reaches are considered.
Parity with the incumbent case is reached for an SR4-LR4 system for an SR4 relative cost of $1.3 x$ supporting 100 m of OM3 and 140 m of OM4.

Kolesar Kalculator Analysis (3 of 5)

Case		Relative 10aG Ch. Cost	Reach		
$\#$	Items		OM3	OM4	OS2
1	SR10 LR4	1 10	100 m	150 m	
2	SR4	0.7 10	50 m	70 m	
	LR4	10 km			
3	SR4	1.0	70 m	100 m	
	LR4	10			10 km
4	SR4	1.3	100 m	140 m	
	LR4	10			10 km

Relative cost factors in the above table are not estimates but provided as 'what-if' factors.

The above chart shows data center costs comparisons generated with the Kolesar Kalculator for the reach distributions built into the calculator. Four 100G/Ch. cases were analyzed. See above table for definitions.
Case 1 is the incumbent case where only 100GBASE-SR10 and 100GBASE-LR4 exist.
Cases $2,3 \& 4$ replace SR10 in Case 1 with SR4. Here SR4 combinations of relative cost and reaches are considered.
Parity with the incumbent case is reached for an SR4-LR4 system for an SR4 relative cost of $1.3 x$ supporting 100 m of OM3 and 140 m of OM4. While cases 2 \& 3 show an advantage for the server-to-switch segments, the advantage is lost for the switch-to-switch segments.

Kolesar Kalculator Analysis (4 of 5)

Case		Relative 100G Ch. Cost	Reach		
\#	Items		OM3	OM4	OS2
1	$\begin{aligned} & \text { SR10 } \\ & \text { LR4 } \end{aligned}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	100 m	150 m	10 km
2	$\begin{aligned} & \text { SR4 } \\ & \text { LR4 } \end{aligned}$	$\begin{aligned} & 1.3 \\ & 10 \end{aligned}$	100 m	140 m	10 km
3	SR4 PSM4 LR4	$\begin{aligned} & 1.2 \\ & 3.5 \\ & 10 \end{aligned}$	70 m	100 m	$\begin{gathered} 1 \mathrm{~km} \\ 10 \mathrm{~km} \end{gathered}$
4	SR4 PSM4 LR4	1 3.5 10	70 m	100 m	$\begin{gathered} 1 \mathrm{~km} \\ 10 \mathrm{~km} \end{gathered}$

Relative cost factors in the above table are not estimates but provided as 'what-if' factors.

The above chart shows data center costs comparisons generated with the Kolesar Kalculator for the reach distributions built into the calculator. Four 100G/Ch. cases were analyzed. See above table for definitions.
Case 1 is the incumbent case where only 100GBASE-SR10 and 100GBASE-LR4 exist.
Case 2 replaces SR10 in Case 1 with SR4 at factors providing parity with the incumbent case.
Cases 3 \& 4 explores the inclusion of PSM4 with SR4 at a shorter reach than the parity case but with lower cost factors.
PSM4 in combination with a lower-cost-short-reach SR4 enables lower total costs for all segments.

Kolesar Kalculator Analysis (5 of 5)

Case		Relative 100G Ch. Cost	Reach		
\#	Items		OM3	OM4	OS2
1	$\begin{aligned} & \text { SR10 } \\ & \text { LR4 } \end{aligned}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	100 m	150 m	10 km
2	$\begin{aligned} & \text { SR4 } \\ & \text { LR4 } \end{aligned}$	$\begin{aligned} & 1.3 \\ & 10 \end{aligned}$	100 m	140 m	10 km
3	SR4 PSM4 LR4	$\begin{aligned} & 1.0 \\ & 3.5 \\ & 10 \end{aligned}$	70 m	100 m	$\begin{gathered} 1 \mathrm{~km} \\ 10 \mathrm{~km} \end{gathered}$
4	SR4 PSM4 LR4	$\begin{aligned} & 0.7 \\ & 3.5 \\ & 10 \end{aligned}$	50 m	70 m	$\begin{gathered} 1 \mathrm{~km} \\ 10 \mathrm{~km} \end{gathered}$

Relative cost factors in the above table are not estimates but provided as 'what-if' factors.

Total Cost Comparison

The above chart shows data center costs comparisons generated with the Kolesar Kalculator for the reach distributions built into the calculator. Four 100G/Ch. cases were analyzed. See above table for definitions.
Case 1 is the incumbent case where only 100GBASE-SR10 and 100GBASE-LR4 exist.
Case 2 replaces SR10 in Case 1 with SR4 at factors providing parity with the incumbent case.
Cases 3 \& 4 explores the inclusion of PSM4 with SR4 for combinations of reach and cost factors.
While PSM4 in combination with a lower-cost-short-reach SR4 enables lower total costs for all segments, there is a trade-off between optimizing for costs and reach.

100G Crossover Analysis - Relative Cable Plant \& Transceiver Cost (1)

The charts shows relative cable and transceiver costs for a 100G channel based on estimates from Corning and petrilla_02a_0112_NG100GOPTX (page 12) and is the same cable plant used in petrilla_01_0312_NG100GOPTX.
This scenario reflects the simplest cable plant structure .
Transceiver cost factors are shown in the charts, e.g. $10: 2$
: 1.3 : 1 corresponds to LR4: PSM4 : SR4 : SR10 and SMF1x = LR4, SMF4x = PSM4, OMn4x = SR4, and OMn12x = SR10.
While parity between SR4 and SR10 costs can be seen at 50 m for the 1.3 SR4/SR10 factor, SR4 shows an advantage at

 longer reaches and lower cost ratios.

100G Crossover Analysis - Relative Cable Plant \& Transceiver Cost (2)

The charts shows relative cable and transceiver costs for a 100G channel based on estimates from Corning and petrilla_02a_0112_NG100GOPTX (page 12)
This scenario reflects the simplest cable plant structure .
Transceiver cost factors are shown in the charts, e.g. $10: 2$
: 1.3 : 1 corresponds to LR4: PSM4 : SR4 : SR10 and
SMF1x = LR4, SMF4x = PSM4, OMn4x = SR4, and OMn12x = SR10.
Here the SR4 solution, perhaps since all trunk fibers are used, shows an advantage at all reaches for SR4/SR10 cost factors in the range of 0.7 to 1.3.

The charts shows relative cable and transceiver costs for a

Recipe for low cost, low power SR XCVR (Iclp SR): Scaling 40G SR4

	40G SR4	Iclp SR	Risk	Comments
Signal Rate/Lane	10.3125 GBd	25.78125 GBd		$2.5 \times$ scaling
Tx output transition time	44 ps	17.6 ps	High	$1 / 2.5 \times$ scaling
Fiber effective modal BW	20 GHz	50 GHz	Low	$2.5 \times$ scaling, change 100 m of OM3 to 88 m of OM4
Chromatic Dispersion BW	26.5 GHz	68.5 GHz	High	$2.5 \times$ scaling, change fiber Disp. So from 0.10275 to 0.04526 ps/nm²km,
Chromatic Dispersion BW	26.5 GHz	68.5 GHz	High	or change Tx Uw from 0.65 to 0.286 nm , or a combination, e.g. Uw $=$ 0.50 nm \& Disp $\mathrm{So}=0.05883 \mathrm{ps} / \mathrm{nm}^{2} \mathrm{~km}$,
Chromatic Dispersion BW	26.5 GHz	68.5 GHz	Low	or further reduce reach e.g. 67 m of OM 4 with $\mathrm{Uw}=0.50 \mathrm{~nm}$ and no change to Disp. So.
Rx BW w RxS $=-11.3 \mathrm{dBm}$	7500 GHz	18750 GHz	High	2.5 x scaling, maintains 8.3 dB signal budget, no change in OMA
Rx BW w RxS $=-9.3 \mathrm{dBm}$	7500 GHz	18750 GHz	Medium	Requires Min Tx OMA from -3.0 to -1.0 dBm for 8.3 dB signal budget
Rx BW w RxS $=-7.3 \mathrm{dBm}$	7500 GHz	18750 GHz	Medium	Requires Min Tx OMA from -3.0 to +1.0 dBm for 8.3 dB signal budget
TP1 J2, J9, Qsq, Eye Mask Coordinates	0.17UI, $0.29 \mathrm{UI}, 45 \mathrm{~V} / \mathrm{V}$, $0.11 \mathrm{UI}, 0.31 \mathrm{UI}, 95 \mathrm{mV}, 350 \mathrm{mV}$	0.17UI, $0.29 \mathrm{UI}, 45 \mathrm{~V} / \mathrm{V}$, $0.11 \mathrm{UI}, 0.31 \mathrm{UI}, 95 \mathrm{mV}, 350 \mathrm{mV}$	High	Input conditions scaled from XLPPI, no CDR and no equalization except as found in 40GBASE-SR4.
TP4 J2, J9, Eye Mask Coordinates	$0.42 \mathrm{UI}, 0.659 \mathrm{UI}, 0.29 \mathrm{UI}$, $0.5 \mathrm{UI}, 150 \mathrm{mV}, 425 \mathrm{mV}$	$0.42 \mathrm{UI}, 0.659 \mathrm{UI}, 0.29 \mathrm{UI}$, $0.5 \mathrm{UI}, 150 \mathrm{mV}, 425 \mathrm{mV}$	High	Output requirements scaled from XLPPI, no CDR and no equalization except as found in 40GBASE-SR4

A low cost, low power 100G SR4 would presumably have unretimed interfaces
Known solutions - low risk and require no optical link equalization, essentially a scaled 40GBASE-SR4. The above table considers key attributes for such scaling and assigns a risk factor.

Early results - medium risk
Need verification - high risk The only low risk item appears to be scaling the optical media to reach the required $2.5 \times \mathrm{BW}$.
A 100G SR4 that does not require, at least, retimers does not seem feasible within the near future.

100G 25G/Lane MMF Transceiver: Reach \& Equalization (1/3)

-The above charts are generated using a 10GEPBud3_1_16a link model with no optical link equalization where jitter at TP1 (RJ = 0.1 UI and DJ = 0.1 UI) and at TP4 (TJ = 0.8 UI) represent the jitter generation and tolerance of CDR included in the optical transceiver.
-The chart on the left is provided by the link model which unfortunately does not include the power penalty required to support a desired eye opening. The chart on the right provides that information for two CDR cases: $\operatorname{CDR}(0.20 \mathrm{UI})$ for a CDR with a 0.2 UI jitter generation and a 0.8 UI jitter tolerance, and CDR(0.25 UI) for a CDR with a 0.25 UI jitter generation and a 0.75 UI jitter tolerance. The power penalty, Peye, from the right should be added to Ptotal on the left.
-With CDRs of the quality of $\operatorname{CDR}(0.20 \mathrm{UI})$ and power budgets of 8.3 dB , OM4 links up to 50 m may not require equalization.

100G 25G/Lane MMF Transceiver: Reach \& Equalization (2/3)

-The above charts are generated using a link model, 32GFC 3T FFE v1a, that includes the affects of equalization for a link with the same attributes as that on the previous page, i.e. power budget of 8.3 dB with input and output CDRs of the quality of $\operatorname{CDR}(0.20 \mathrm{UI})$. As on the previous page the penalty for opening the output eye, Peye, is not included.
-The link model, 32GFC 3T FFE v1a, was developed by David Cunningham in the FC-PI-6 project and is available in T11/12-044v1. Additional references are available on the following page.
-Here a 3-tap FFE appears to run into a noise induced wall near 125 m of OM4 and a DFE $(3,1)$ runs into that wall near 135 m of OM4. Further, if Peye is considered, 100 m of OM4 will be a challenge for a DFE $(3,1)$ as will 80 m of OM4 be for a 3-tap FFE.

100G 25G/Lane MMF Transceiver: Reach \& Equalization (3/3)

-The DFE represented by the spreadsheet is roughly a 3-Tap FFE (T spaced) followed by 1 DFE tap which is termed DFE $(3,1)$. In presentations to FC-PI-6, David Cunningham has shown that for the optical link a $\operatorname{DFE}(3,1)$ is close to optimum. Longer DFE's do not help the optics.
-The document number for the 32FGC Spreadsheet is: T11/12-044v1
-The document numbers and titles for the T11 presentations on the spreadsheet are:
-T11/12-042v0 "Modifications To The Mode Partition Noise Penalty Calculation For Equalised 32GFC Links"
-T11/11-502v0 "Optical Link Model Modifications Required To Include A Short Equaliser"
-These can be accessed by logging in to the T11 (http://www.t11.org/index.html) site as a guest, clicking on Docs, clicking on access by document number and entering the number.

