

Equalizer Simulation Results for 10Gb/s MMF Channels

Sudeep Bhoja Big Bear Networks

Finite Length DFE Simulation

- Matlab model uses well established and documented¹ Minimum Mean Square Error analysis for finite length FFE/DFE based Rx
- MMSE results automatically account for residual ISI and noise
- T/2 spaced Equalizer are simulated
 - Allows the FFE to implement a matched filter followed by a T spaced Equalizer for optimal performance
 - Relatively insensitive to sampling phase
- Tap Coefficients w = R⁻¹ · P
 - R is the channel autocorrelation matrix of the sampled data signal
 - P is the channel cross-correlation vector
- TIA thermal noise is assumed white and gaussian
- RIN is assumed white and gaussian at the Transmitter, but spectrally shaped by the fiber and the Rx

Ref 1 - pp521-524 in "Digital Communication" by Edward Lee and David Messerschmitt

Link Parameters used in Simulation

<u>Parameter</u>	10GBASE-L*
Tx Rise Time (20-80%)	47.1 ps
Rx Bandwidth	7.725 GHz
RIN	-128 dB/Hz
Available Power Budget	10 dB
Modal Noise and other effects	0.7 dB
Channel Insertion Loss	2.3 dB
Power Budget for Ideal ¹ EDC	5.5 dB
EDC Implementation Penalty	1.5 dB
Power Budget allocated for EDC	7 dB

 ^{1 –} Ideal EDC means infinite complexity Equalizer with perfect knowledge of the channel and perfect timing

Measured Fiber Responses

- Measured impulses from the 802.3z National Lab set of fibers
 - http://www.ieee802.org/3/z/mbi/index.html
- Fibers that had a modal bandwidth of ~500 MHz·Km were considered
- 3 fibers were chosen as representative "worst case" candidates
 - 1. Equal power split which causes notch in spectrum
 - 2. High DMD fiber and marginal modal bandwidth
 - 3. Single wide pulse with monotonic frequency roll-off
- Transmit pulse was deconvolved from the measured impulse response for these 3 fibers

Fiber 1 - Equal Power Split

- LG011105L1p.dat equal power split channel with a DMD of 260ps on a 457m fiber
- Scaled to 300m

Fiber 2 - Worse DMD

- LG011142L1p.dat DMD of approximately 450ps on a 457m fiber
- Scaled to 300m

Fiber 3 - Single Pulse

- 72b10000L3c.dat Single time-domain pulse with monotonic roll-off (no notches) in frequency domain
- Scaled to 300m

Linear Equalizer Simulation Results

- On channel with deep spectral notches a relatively high # of FFE taps (>30+) are required for 1dB penalty
- The resultant power penalty is higher than the allocated budget

DFE Simulation Results on Sample Fibers

- # DFE taps are fixed at 6 and # of FFE taps are varied
- Approximately 10-30 T/2 spaced FFE taps result in an implementation penalty of 1dB - 0dB

DFE Simulation Results on Sample Fibers

- Approximately 3 T-spaced DFE taps result in optimal performance on sample fibers
- Resulting power penalty is within allocated budget

Cumulative Coverage Results at 300m (500MHz·Km)

- Cumulative coverage includes all National lab fibers that meet 500MHz·Km bandwidth
- # of DFE taps fixed at asymptotic limit of 10
 - # of FFE taps are varied
- Approximately 20 (T/2) spaced FFE taps can provide 95% coverage
 - 6dB of allocated optical power budget for implemented EDC
 - 0.5dB of allocated implementation penalty for finite length Equalizer

Number of DFE Taps — Cumulative Coverage Results at 300m

- # of (T/2 spaced) FFE taps fixed at asymptotic limit of 40
 DFE taps varied
- 3 DFE taps produces ~97% coverage on measured fibers

Power Penalty vs. Coverage

- Simulated Equalizer is a 20 tap FFE (T/2) and 4 DFE taps
- 95% coverage with 6dB allocated power penalty

Time Variation Channel Model

- Channel simulated is 1 bit period DMD channel
- The power distribution of the two impulses are sinusoidally varied at a rate f

- Measurements with Center Launch indicates up to 100% changes in mode power weighting
- Measurements with Offset Single-mode Launch typically <35% changes in mode power weighting
- Two models were simulated
 - Model 1: Worst Case 100% change in mode power weighting
 - Model 2: ~50% change in mode power weighting
- The weights on the two dirac delta functions separated by T are
 - Model 1: $b_0 = 0.5 \cdot (1 + \cos(2.pi.f.t)), b_1 = 1 b_0$
 - Model 2: $b_0 = 0.5.(1 + 0.3 * cos(2.pi.f.t)), b_1 = 1 b_0$
- Need input from the channel modeling group on a representative time varying channel

Time Domain DFE Simulation

- A benchmark was established by treating each constituent impulse response as static and computing the MMSE theoretical performance
- The time domain adaptive DFE (20 tap FFE (T/2) and 5 tap DFE) was updated at full rate by a decision directed LMS adaptation algorithm
- The adaptation step size µ determines speed of adaptation
 - For stability with LMS adaptation μ << 2 / $\lambda_{max.}$
 - λ_{max} the maximum eigenvalue of the autocorrelation matrix R was computed to be ~2
 - μ should be small to keep excess MSE small
 - Sub sampled implementations of LMS "effectively" decrease the step size $\boldsymbol{\mu}$

DFE Tracking Performance

Model 2 (50%)

DFE Tracking Performance Summary

LMS $\mu = 1E-3$	Implementation Penalty (dB)	
	100Hz	1 KHz
Model 1 (100% Power change)	0.5 dB	2.5 dB
Model 2 (~50% Power change)		0.75 dB

Measurements indicate <35% change in mode power weightings with OSL¹
Ref 1: J. King, "Effect of Launch Conditions on Bandwidth of TIA 12-96 Round Robin Fibers"

Conclusions

- Finite length FFE and DFE can come within 0.5dB of ideal, infinite tap equalizer for these channels
- A Linear Equalizer cannot be accommodated within a 7dB allocated budget for EDC
- A realizable set of FFE and DFE taps can be accommodated within a 7dB allocated budget for EDC
- ~20 T/2 FFE taps & 4 DFE tap combination covers 95% of measured fibers at 300m for BW > 500MHz-km
- 100Hz 1KHz dynamic tracking performance can be achieved within the allocated implementation penalty
 - Additional input from the channel modeling group required for a representative time varying channel model