Worst Case Channel Modeling and Emulation for Electronic Dispersion Compensation

Kevin Witt, Vitesse Semiconductor
Badri Gomatam, Vitesse Semiconductor

IEEE 802.3 Plenary Meeting
WDW, Florida, USA
March 2004
Objectives of this presentation

- Provide a channel modeling methodology.
- Compare simulated and measured results.
- Propose an electrical channel emulator for EDC compliance testing.

Background

- The MMF channel model is a statistical problem.
- Multiple Electronic Dispersion Compensation (EDC) vendors cannot practically share “worst case” fibers for compliance testing.
- An electrical compliance test was proposed at the Vancouver Intern Meeting.
- This presentation expands the channel modeling portion of the compliance test proposal.
Modeling Methodology

- System Identification Based on FIR Model [1]
- Use Pulse response to generate FIR System Model
- FIR model used to generate PRBS patterns

\[y(n) = \sum_{i=0}^{N} b_i x(n-i) \]
\[e(n) = y(n) - \sum_{i=0}^{N} b_i x(n-i) \]

In Matrix Form (data set length = M)

\[X = \begin{bmatrix} x(1) & 0 & 0 & 0 & 0 \\ x(2) & x(1) & 0 & 0 & 0 \\ x(3) & x(2) & x(1) & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x(M) & x(M-1) & x(M-2) & \ldots & x(M-N) \end{bmatrix} \]

\[e = y - Xb \]
\[e^H e = (y - Xb)^H (y - Xb) \]

Yields the LSE Solution

\[b = [b_0, b_1, \ldots, b_{N-1}]^T = (X^H X)^{-1} X^H y \]

• Modeling Methodology (continued)
 • Fiber model length scaling (802.3z Data set)
 • Dispersion is proportional to fiber length
 • The model is time scaled to mimic length scaling

\[b_{L_2}(t) = b_{L_1}(t \frac{L_2}{L_1}) \]

Continuous Time

\[b_{L_2}(n) = b_{L_1}(n \frac{L_2}{L_1}) \]

Discrete Time

Example 850nm, 120m impulse response scaled to 90m, \(T_s=4ps\)

- red = \(b_{120m}(n)\)
- blue = \(b_{90m}(n)\)
Worst Case Channel Modeling and Emulation for EDC

- Optical Measurement Test Bench
 - 62.5um MMF Fiber 160MHz.KM
 - wavelength = 850nm
 - 0, 30m, 60m, 90m, 120m length

- Data Collection
 - Pulse and PRBS-7 patterns
 - Back-2-Back, 90m and 120m
Worst Case Channel Modeling and Emulation for EDC

- Measured vs. Modeled Pulse response
 - Fiber Length 90m
 - 16 tap at T/2 spacing, $T_s=4$ps

\[\hat{y}(n) = b(n) \ast x(n) \]

\[e(n) = y(n) - \hat{y}(n) \]

Input(i), Channel Output(o), Model Output(m)

Model Impulse Resp: $N=16$ Dels=12

\[
\begin{bmatrix}
 b_0 & b_1 & \ldots & b_{15}
\end{bmatrix}
\]

\[
B(\omega) = B(z)\bigg|_{z=e^{j\omega}}
\]
Worst Case Channel Modeling and Emulation for EDC

- Measured vs. Modeled Pulse response
 - Fiber Length 120m
 - 16 tap at T/2 spacing , $T_s=4\text{ps}$

$$x(n)$$
back to back

$$y(n), \hat{y}(n)$$

$$\hat{y}(n) = b(n) * x(n)$$

$$e(n) = y(n) - \hat{y}(n)$$

Fit Error: Channel – Model

Model Impulse Resp: $N=16$ Des= 12

$$[b_0 \ b_1 \ ... \ b_{15}]$$

Model Frequency Response

$$B(\omega) = B(z)\big|_{z=e^{j\omega}}$$

IEEE 802.3, 10GMMF SG, WDW FL, March 15-19, 2004
Worst Case Channel Modeling and Emulation for EDC

- Measured vs. Modeled PRBS response
 - Fiber Length 90m
 - 16 tap at T/2 spacing - Model based on Pulse response

\[
x(n) = b(n) * x(n)
\]
Worst Case Channel Modeling and Emulation for EDC

- Measured vs. Modeled PRBS response
 - Fiber Length 120m
 - 16 tap at T/2 spacing - Model based on Pulse response

\[y(n) = b(n) * x(n) \]
Worst Case Channel Modeling and Emulation for EDC

- Measured vs. Modeled PRBS response (Fiber length Scaling)
 - Fiber Length 90m measured
 - 16 tap at T/2 spacing based on 120m model scaled to 90m

\[
b_{90m}(n) = b_{120m}(\text{rnd}(n \frac{90}{120}))
\]
Electronic Channel Emulator Block Diagram

- A cost effective solution can be may with XFP CDRs with data invert and laser drivers with adjustable output swing.
- Optimal # Taps and Tap spacing (TBD)

![Electronic Channel Emulator Block Diagram](image)
Example Channel Emulator Simulation Result

- Example: University of Cambridge impulse response: Fiber Number 2, Offset 17um
- First Determine a reduced order model to fit the pulse response of the model
Example Channel Emulator Simulation Result (Continued)

- Example: University of Cambridge impulse response: Fiber Number 2, Offset 17um

Theoretical Response to PRBS7 Waveform

Reduced Order Model Response to PRBS7 Waveform
Summary

- Reduced order Channel Models based on pulse response match the measured response well for the measured data.
- Scaling the Channel model based on pulse response match the measured response well for the measured data.
- A cost effective electronic implementation appears reasonable.