IEEE 802.3ae Task Force

Hari Coding Issues & Proposal

Dallas, TX
January 18, 2000
Richard Taborek Sr.
nSerial Corporation
408-845-6102
rtaborek@earthlink.net
Where does Hari fit in?

- Hari a.k.a. XMII, Sali
- Parallel 10 GMII
- Hari Functions
- Hari Data
- Serial 10 GMII
- Hari Functions
- Medium
- MAC
- TXC
- TXD
- RXC
- RXD
- 36
- PMD
- PCS/PMA
- PHY
- Management
- MDC
- MDIO
- Hari Mgmt
- IEEE P802.3ae Task Force
Hari Benefits

- PCS/PMA Integration Into MAC
- Low power SerDes
- 0.25 micron CMOS feasible
- Independent Jitter budget
- System Layout Flexibility
- Low pin count
- to 20” FR-4 PCB
- PMD Independence
- Scalability
- Multi-Protocol Commonality
 - 10 GbE
 - 10 GFC
 - InfiniBand™
- Self-Timed
10G Link Architecture/Jitter Budget

- Medium Jitter Budget is independent of Hari
 - Requires Hari functionality in PMD
- Hari-based PMD simplifies 10 GbE link development

1 Optional Hari retiming functionality
2 Optional PMD recoding/signaling
OSI Model/10 GbE Proposed Layers

OSI Reference Model Layers:
- Application
- Presentation
- Session
- Transport
- Network
- Datalink
- Physical

P802.3ae Full Duplex Layers:
- LLC—Logical Link Control
- MAC Control (Optional)
- MAC—Media Access Control
- Reconciliation

Higher Layers:
- Parallel 10GMII (Sali)
- Serial 10GMII (Hari)
- PCS—Physical Coding Sublayer
- PMA—Physical Medium Attachment
- PMD—Physical Medium Dependent
- PMDC—PMD Coding Sublayer (Optional)
- PMDS—PMD Signaling Sublayer (Optional)
- LX-PMD
- SX-PMD

MDI
MEDIUM
Hari Coding Functions & Features

- **Mapping:** Direct to/from Parallel 10 GMII (Sali)
 - PMD direct to/from 64B/66B or PAM5x4; Same as WWDM
- **Link Synchronization:** Comma, /K/, /K28.5/
 - PCS generates /K/ columns during IPG in /K/R/ pattern
- **Clock Tolerance Compensation:** Skip, /R/, /K28.0/
 - PCS generates /R/ columns during IPG in /K/R/... pattern
 - Receiver inserts/removes /R/ columns
 - Multiple Clock Domains are optional, but may help control jitter
- **Lane Deskew - Alignment of Received Columns**
 - Required for Skip and Low-Latency data processing
 - Align to /K/ columns present in PCS Idle pattern
Direct Sali-to-Hari Mapping

Sali (a.k.a. XMII, Parallel 10 GMII)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>I</th>
<th>S</th>
<th>d_p</th>
<th>d</th>
<th>d</th>
<th>---</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d_f</th>
<th>I</th>
<th>I</th>
<th>I</th>
<th>I</th>
<th>I</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>D<0:7></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>S</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>D<8:15></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>D<16:23></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>D<24:31></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>d_p</td>
<td>d_s</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

Hari (a.k.a. Serial 10 GMII)

<table>
<thead>
<tr>
<th>Lane</th>
<th>K</th>
<th>R</th>
<th>S</th>
<th>d_p</th>
<th>d</th>
<th>d</th>
<th>---</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d_f</th>
<th>R</th>
<th>K</th>
<th>R</th>
<th>K</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 0</td>
<td>K</td>
<td>R</td>
<td>S</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Lane 1</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>T</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
</tr>
<tr>
<td>Lane 2</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
</tr>
<tr>
<td>Lane 3</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_s</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
</tr>
</tbody>
</table>
Direct Hari-to-64B/66B Mapping

Hari columns partitioned into 64B/66B sub-frames

<table>
<thead>
<tr>
<th>Lane 0</th>
<th>K</th>
<th>R</th>
<th>S</th>
<th>d<sub>p</sub></th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>R</th>
<th>K</th>
<th>K</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 1</td>
<td>K</td>
<td>R</td>
<td>d<sub>p</sub></td>
<td>d<sub>p</sub></td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>R</td>
</tr>
<tr>
<td>Lane 2</td>
<td>K</td>
<td>R</td>
<td>d<sub>p</sub></td>
<td>d<sub>p</sub></td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>T</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>R</td>
</tr>
<tr>
<td>Lane 3</td>
<td>K</td>
<td>R</td>
<td>d<sub>p</sub></td>
<td>d<sub>s</sub></td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
</tr>
</tbody>
</table>

64B/66B sub-frames in serial transmission order

64B/66B code-group representations shown. Specific sub-frame mapping described in walker_1_0100.pdf
Direct Hari-to-PAM5×4 Mapping

Sali (a.k.a. XMII, Parallel 10 GMII)

| D<0:7> | I | I | S | d_p | d | d | --- | d | d | d | d_f | I | I | I | I | I | I |
|--------|---|---|---|-----|---|---|-----|---|---|---|-----|---|---|---|---|---|
| D<8:15> | I | I | d_p | d_p | d | d | --- | d | d | d_f | T | I | I | I | I | I |
| D<16:23> | I | I | d_p | d_p | d | d | --- | d | d | d_f | I | I | I | I | I | I |
| D<24:31> | I | I | d_p | d_s | d | d | --- | d | d | d_f | I | I | I | I | I | I |

Hari (a.k.a. Serial 10 GMII)

<table>
<thead>
<tr>
<th>Lane 0</th>
<th>K</th>
<th>R</th>
<th>S</th>
<th>d_p</th>
<th>d</th>
<th>d</th>
<th>---</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d_f</th>
<th>R</th>
<th>K</th>
<th>R</th>
<th>K</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 1</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>T</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
</tr>
<tr>
<td>Lane 2</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
</tr>
<tr>
<td>Lane 3</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_s</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
</tr>
</tbody>
</table>

PAM5×4

| R | R | R | S | d_p | d_p | --- | d | d | d | --- | d_f | T | K | K | R | R | R |

PAM5×4 code-group representations shown. Specific symbol mapping describe in taborek_2_1199.pdf
10 GbE Hari Idle Encoding

- **/K/R/ repeating Idle pattern**
 - /K/ = /K28.5/, contains comma
 - Used for Link Synchronization, Lane Deskew, EOP padding
 - /R/ = /K28.0/, disparity neutral
 - /R/ columns (Skips) may be inserted/removed to compensate for clock tolerance differences
- “Even/Odd” column alignment is superfluous
10 GbE Hari SOP Encoding

- **/S/** Start of Packet Delimiter
 - **/S/** = **/K27.7/**
 - Also serves as Lane 0 ID
 - Useful for addressing Serial PMD “lane rotation”
10 GbE Hari Data Encoding

- /d/ Packet Data
 - /d_p/ Preamble; /d_s/ Preamble SFD; /d_f/ FCS
- Supports WAN PHY Preamble replacement, but…
 - …Only if Column-Striping is used
 - Word-Striping requires commas in Preamble
10 GbE Hari EOP Encoding

<table>
<thead>
<tr>
<th>Lane 0</th>
<th>K</th>
<th>R</th>
<th>S</th>
<th>d<sub>p</sub></th>
<th>d</th>
<th>d</th>
<th>---</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>df</th>
<th>R</th>
<th>K</th>
<th>R</th>
<th>K</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 1</td>
<td>K</td>
<td>R</td>
<td>d<sub>p</sub></td>
<td>d<sub>p</sub></td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>df</td>
<td>T</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Lane 2</td>
<td>K</td>
<td>R</td>
<td>d<sub>p</sub></td>
<td>d<sub>p</sub></td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>df</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Lane 3</td>
<td>K</td>
<td>R</td>
<td>d<sub>p</sub></td>
<td>d<sub>s</sub></td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>df</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

- **/T/** End of Packet (EOP) Delimiter
 - **/T/** = **/K29.7/**
 - EOP padded with **/K/**
10 GbE Hari Error Encoding

<table>
<thead>
<tr>
<th>Lane 0</th>
<th>K</th>
<th>R</th>
<th>S</th>
<th>d_p</th>
<th>d</th>
<th>d</th>
<th>---</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d_f</th>
<th>R</th>
<th>K</th>
<th>R</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 1</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>T</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>Lane 2</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>E</td>
<td>d_f</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>Lane 3</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_s</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
</tbody>
</table>

- **/[E]/** The “dreaded” Error code-group
 - Same as GbE **/[V]/** Void code-group
 - **/[E]/ = /[K30.7]/**
 - Signaled when an error is detected in the received signal or needs to be forced into the transmitted signal
10 GbE - PMD Inserts /R/ column

<table>
<thead>
<tr>
<th>Lane</th>
<th>K</th>
<th>R</th>
<th>S</th>
<th>d_p</th>
<th>d</th>
<th>d</th>
<th>---</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d_f</th>
<th>R</th>
<th>K</th>
<th>R</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 0</td>
<td>K</td>
<td>R</td>
<td>S</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>Lane 1</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>T</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>Lane 2</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>Lane 3</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_s</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
</tbody>
</table>

PMD Inserts /R/ column here

<table>
<thead>
<tr>
<th>Lane 0</th>
<th>K</th>
<th>R</th>
<th>S</th>
<th>d_p</th>
<th>d</th>
<th>d</th>
<th>---</th>
<th>d</th>
<th>d</th>
<th>d</th>
<th>d_f</th>
<th>R</th>
<th>R</th>
<th>K</th>
<th>R</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 1</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>Lane 2</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_p</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>Lane 3</td>
<td>K</td>
<td>R</td>
<td>d_p</td>
<td>d_s</td>
<td>d</td>
<td>d</td>
<td>---</td>
<td>d</td>
<td>d</td>
<td>d_f</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
</tbody>
</table>
Hari Coding Issues (here we go!)

1. To B 8B/10B or not to B
2. Column-Striping or Word-Striping
3. EMI concerns with bandwidth constrained codes
4. Multi-Protocol support
5. Multi-PMD support
6. Initialization pattern for Deskew/Link Sync
1. Hari Transmission Code

• Other codes have been proposed for Hari
 ◆ MB810, 1000BASE-T derivatives, etc.
• 8B/10B is ubiquitous, robust, simple
• Well known by Ethernet equipment designers
• Low gate-count/complexity Encode/Decode
• 10 GbE mappings close to 1000BASE-X PCS
• No other code proven to be significantly better

.: No reason to change. Stick with 8B/10B.
2. Column-Striping or Word-Striping

- Hari WILL work with either striping method
 - Economic, NOT Technical feasibility, IS the issue
- 10 Gbps PMD/Protocol independent Hari is Key
 - Column-Striping works best for all: 10 GbE, 10 GFC, InfiniBand™, OIF, Serial LAN PMD @ 10.3125 Gbaud, WAN PHY, MAS PMD, WWDM PMD
- Low Power discrete and core SerDes are needed
 - Only enabled by new SerDes designs
 - PCS/PMA co-location enables SerDes simplification
 - Move traditional high-power SerDes functions to parallel logic

: Go for the $Green$. Choose Column-Striping
3. EMI concerns with 8B/10B

- 8B/10B is a bandwidth constrained code
- EMI concerns abound with GbE at 1.25 Gbps
 - Hari 10 GbE EMI concerns are 10X GbE
 - This should say: Houston… we have a problem…
- This Engineering problem can we well contained
 - Hari architecture, Column-Striping are containment keys
 - IEEE 1394b has already addressed this problem
 - Solution directly applicable to 8B/10B encoded links.

.: We’re great at leveraging technology: P1394b
4. Multi-Protocol support

• ~10 Gbps PHYs include 10 GbE, 10 GFC, InfiniBand™, SONET OC-192c

• Most 10 Gbps high-volume PHYs should be similar
 ♦ LAN, SAN, MAN/WAN access

• The IEEE 802.3ae Task Force is setting direction
 … For cost effective 10 Gbps PHYs
 ♦ We need to make the proper technology choices
 ♦ Make them in light of other industry activities/directions

.: Support Hari, 8B/10B, Column-Striping for all
5. Multi-PMD support

- Hari works for all PMDs, including WAN
- Hari is a strategic chip-to-chip interconnect
- Hari is **NOT** a PMD
 - Hari supports the **ATTACHMENT** of the MAC to PMD
- Hari simplifies 10 Gbps link designs
 - Greatly increases medium jitter budget
 - Enhanced integration, scalability, flexibility
 - With today’s chip technology, Hari is no more complex than yesterday’s parity bit, but buys a lot more!

: All PMDs benefit from Hari. Standardize it!
6. Deskew/Link Sync Initialization

- Two problems with Deskew and Initialization
 a) DeSer process may increase effective skew
 - See dedrick_1_0100.pdf
 b) KR Idle is only 40-bits long during Initialization
- A simple robust Idle solves both problems
- Solution proposed in dedrick_1_0100.pdf, additionally
 - Define Align code-group, /A/ = /K28.3/
 - /A/ Columns replace /R/ Columns as 1st full IPG column and every 16th IPG column, if applicable. Not deletable.
 - /K/ code-groups always pad out column containing EOP
 - Receiver aligns to /A/K/, /A/ provides comma “cursor”

.. Add Alignment Function to Hari
New 10 GbE Receiver Deskew

Skewed data at receiver input. Skew ~18 bits

<table>
<thead>
<tr>
<th>Lane 0</th>
<th>K</th>
<th>R</th>
<th>K</th>
<th>A</th>
<th>K</th>
<th>R</th>
<th>K</th>
<th>R</th>
<th>K</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 1</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>A</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>Lane 2</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>A</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>Lane 3</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>A</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
</tr>
</tbody>
</table>

Align lanes by lining up commas prefixed by Align code-groups
Hari Coding Summary

- Simple rules, Protocol/Application independence
 - Common coding rules for 10 GbE, IB, FC, WAN PHY
- Cost-effective “system interface” for all PMDs
- Leverages high-reliability, ubiquitous 8B/10B code
 - Low gate-count/complexity Encode/Decode, well known
- Virtually identical to 1000BASE-X PCS
- Column aligned data enables simplest Rx process
 - Enables lowest power SerDes design
 - No serialization delays, low speed clocking
 - Implementation flexibility (e.g. 4/8/16 octets/cycle)
- Overall best match for simple 10G System Interface