Auto-Negotiation

IEEE 802.3 HSSG - Coeur d'Alene, ID

Rich Taborek
Principal Architect
Transcendata, Inc.
1029 Corporation Way
Palo Alto, CA 94303
Phone: +1 650 210 8800 x101
Fax: +1 650 940 1898
Email: rtaborek@transcendata.com
AN Elements

- Presented to NCITS T11.2 and T11 in April, 1999
- Applicable to 10 GbE, GbE, FC, P1394b, NGIO...
 - Liaisons required to establish global requirements
- Applicable to Point-to-Point Links Only
 - FC-AL AN support requires device addressing protocol
- Signaling: derived from P1394b
 - Signal Detect-based “tones” work for fiber and copper
- Protocol: derived from Ethernet
 - Base/optional next page exchange, priority resolution, remote fault
- Management (Optional): derived from Ethernet
 - Management Registers and 2-wire Interface
Auto-Negotiation Review

- Method used to exchange information between 2 stations;
- Used to configure operating parameters such as speed, flow control;

- An AN device advertises its abilities and detects the abilities of its Link Partner (remote device);
- AN information is exchanged using link pulses and acknowledged;
- AN compares the two sets of abilities and uses a priority resolution algorithm to establish the best mode of operation;
- The highest performance common technology is attached to the media;
- AN becomes transparent until reinvoked due to reset, power-on, link failure, etc.;
- Allows for automatic link establishment without user intervention.
Serial Auto-Negotiation

- Serial Receivers generally include two receive circuits
 - Data Acquisition logic
 - Signal Detect
- Data Acquisition logic limitations
 - Frequency response limitations
 - Prevents direct communication between 1X and 2-10X or greater variants
- Signal Detect logic may be used as a “Morse code”
 - Tones may be used between 1X and 2-10X or greater variants
- Existence Proof
 - P1394b startup protocol
- Use Toning as basis for Serial AN Signaling (optical & CX)
Serial AN Issues

- **Signal Detect**
 - Required to support Auto-Negotiation

- **Tone Frequency**
 - Should support 1X and 2-10X or more speed variants
 - Propose 531.25 MHz square wave
 - b’1010101010/0101010101’ 8B/10B D21.5 code @ 1X speed
 - b’1100110011/0011001100’ 8B/10B D24.3 code @ 2X speed
 - b’1100000111/0011111000’ 8B/10B K28.7 code @ ≥4X speed
 - Significantly faster than 1394b tone rate (48MHz - 64MHz)
 - Probably invisible to interfaces less than 1 GbE
 - Propose that lower speed FC variants are not interoperable
 - If AN is supported by only one link end, and AN fails, it is assumed that the link partner is a 1X device
Tone Pulse Timing

- Tone Pulses correspond to Ethernet Fast Link Pulses (FLP)
- Proposed Pulse Timing basis is Signal Detect response
 - Specs may be derived from GBIC, GbE, P1394b
 - Transmit Disable pulsing is too slow, extends AN time
- Proposed Pulse and Pulse-to-Pulse timings
 - T1 - Pulse Duration: 50 µs
 - T2 - Clock-to-Clock/Data-to-Data Duration: 200 µs
 - T3 - Clock-to-Data/Data-to-Clock Duration: 100 µs
Tone Pulse/Burst Protocol

- Proposed Protocol basis is Ethernet AN
 - Ethernet AN provides multi-technology support, management interface, speed negotiation, similar speed ranges, common PHY components, proven state machines, vendor extensions
 - Tone Pulses are arranged 17-33 Pulses to a Burst
 - Tone Bursts are transmitted repeatedly until ACK’d by Link Partner
 - Tone Burst Protocol includes Base Page and Optional Next Page Exchange
 - Priority Resolution algorithm establishes best mode of operation
 - The highest performance common technology is enabled
References

- **Auto-Negotiation**

- **Toning**

- **Specs**