Low overhead coding proposal
10GbE serial links

Rick Walker
Agilent Technologies Laboratories, Palo Alto, CA
rick_walker@agilent.com

Richard Dugan
Agilent Technologies, Integrated Circuits Business Division, San Jose
richard_dugan@agilent.com
Outline

- Goals
- Motivation
- Code Overview
- Code Properties
- Comparison to SONET
- Typical Application
- Summary
Goals

• provide full 10.000 Gb/s bandwidth for LAN applications
• provide PMD for long-distance (10km - 40km+) LAN requirements
• interface directly to common MAC/PCS/PMA interface (HARI, 4x3.125 GBaud) with control code transparency
• ensure robust DC-balance, transition-density, and frame synchronization properties suitable for either copper or fiber transmission
• achieve a low enough coded baud-rate to be compatible with existing SONET laser designs
Motivation

- Both optics and copper implementations become much more difficult to implement above 10 Gbaud
- An efficient code can leverage existing SONET 10Gbaud lasers rather than requiring fundamentally new technology
- A simple code can be efficiently implemented in many processes
Why an efficient 10Gb serial code?

Four markets (depending on distance):
- 10G Serial copper (0-10m)
- Parallel optics (0-100m)
- WDM 4x3.125G (5m - 10km)
- 10G Serial fiber (10km - 40km)

Later on, in a mature technology, the 25% may never be recovered.
Early in the technology growth cycle, a 25% efficiency loss is recouped in a few months.
Two views of the future

- System density and performance put increasing pressure on pin and package count
- 2-4 Gb/s serial links will be pervasive in future designs

“traditional” wide bus signalling uses pins and PCB real-estate

HARI and other SIO-like systems adopt CDR techniques for 2-4 Gb/s serial chip I/O
Overview of Code

If octets are either data or control, then at least an 8B/9B code is required - hardly a significant improvement over 8B/10B.

Two properties of HARI 10GbE proposal allow for a more efficient code:

- Only a limited number of control characters are needed (K,R,S,T,E...) which can be coded in 7 bits.
- Data is transmitted in contiguous blocks of at least 64 octets always starting with S and ending with T.

If we code on 64 bit (8 octet)-sized blocks, each block can only contain one transition from control to data or vice-versa.

A two-bit preamble allows frame synchronization and gives a 66/64 code with only 3.125% overhead.
Overview of Code (cont.)

Data Codewords have “01” sync preamble

64 bit data field (scrambled)

Mixed Data/Control frames are identified with a “10” sync preamble. The coded 56 bit payload and TYPE field is also scrambled.

8-bit TYPE combined 56 bit data/control field (scrambled)

00,11 preambles are considered as code errors
Building frames with proposed HARI 10GbE mapping

\[
\begin{align*}
\end{align*}
\]

S,T = SOP, EOP
K,R = control words (Z)
D = Data octets
Code definition

Pure Data Frame with 01 sync preamble

Pure Control Frame with 10 sync preamble

Mixed Data/Control Frames with 10 sync preamble

all payloads shown as before scrambling
SOP (S) and EOP (T) are implicitly transmitted by the TYPE byte
Code definition (cont.)

|---|---|------|-----|-----|-----|-----|-----|-----|-----|

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0XDE</th>
<th>D:8</th>
<th>Z:7</th>
<th>Z:7</th>
<th>Z:7</th>
<th>Z:7</th>
<th>Z:7</th>
<th>Z:7</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0X4B</th>
<th>D:8</th>
<th>D:8</th>
<th>Z:7</th>
<th>Z:7</th>
<th>Z:7</th>
<th>Z:7</th>
<th>Z:7</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0X87</th>
<th>D:8</th>
<th>D:8</th>
<th>D:8</th>
<th>Z:7</th>
<th>Z:7</th>
<th>Z:7</th>
<th>Z:7</th>
</tr>
</thead>
</table>
Scrambling principle

example scrambler/descrambler in serial form:

parallel form:

- Self synchronizing (Westcott-style scrambler)
- Can be parallelized for efficient implementation
- Recommend long pattern length to reduce possibility of jamming (eg: $x^{31} + x^{3} + 1 = 0$)
- Long pattern length self-synchronizing scramblers exist that do not compromise Ethernet CRC coverage
Code Properties

- maximum run-length is guaranteed to be 64 or better due to 2-bit preamble (better than SONET)
- DC balance is suitable for laser transmission (slightly better than SONET)
- overhead is $66/64 = 1.03125$
- frame lock is acquired by bit-slipping the de-multiplexor until the complementary 2-bit preamble bits are found to be statistically stable.
Comparison with SONET

- two-bit preamble is analogous to SONET’s A1/A2 sync bytes.
- SONET CDRs are designed to accommodate an 80 bit run length. This new code is deterministically limited to 64 bit run length due to the periodic preamble bits.
- Both codes use similar bit-slipping method to acquire frame sync.
- This code is similar in spirit to the SONET code. It is not in any way compatible, but inherits much of SONET properties while being much simpler to implement.
- Much less on-chip buffering required
- Lower latency
Code Robustness

- 2 bit Hamming distance between data (01) and mixed frames (10)....code could be modified to have 3 bit distance at the cost of raising overhead from 3.1% to 4.7%
- TYPE fields within mixed frames have 4-bit Hamming distance
- There exist long-period scramblers that do not impair CRC coverage and are difficult to jam (details can be provided)
A possible implementation

Quad 3.125 Gb/s (8/10 coded 2.5 Gb/s streams)

OC-192 Compatible Data Rate for using existing laser components

With TX equalization, 5-meter transmission over RG-174 coax is feasible, or 10 meters over 0.2” dia. coaxial cable

IEEE 802.3 HSSG

Low overhead coding proposal for 10Gb/s serial links
Conclusion

• A simple, low overhead SONET-like code is possible
• HARI (4 x 3.125Gbaud) becomes a common interface for all PMDs:
 • 4-color WDM (Spectra-LAN)
 • Parallel fiber
 • 0.5 meter chip-chip, card-card interface on PCB
 • Serial 10.3 Gb/s (copper to 15m, fiber to 40km)