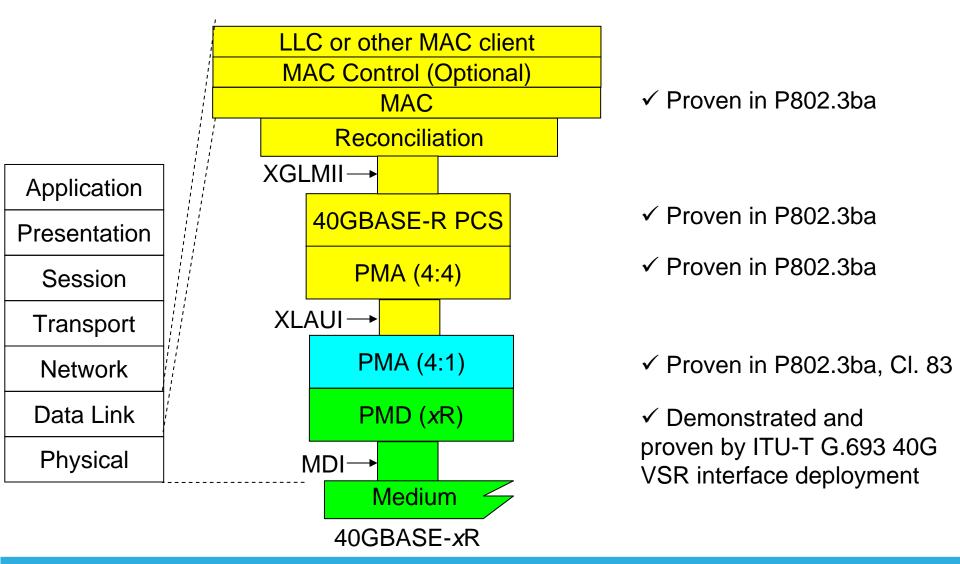
40 Gb/s Ethernet optimized for client applications in the carrier environment: TECHNICAL FEASIBILITY


Jon Anderson & Matt Traverso – Opnext Jens Fiedler – u2t Atul Gupta & Francis Ho - Inphi Song Shang – Semtech (SMI) Pete Anslow, Nortel Networks John D'Ambrosia, Force10 Networks Steve Trowbridge, Alcatel-Lucent Mark Nowell - Cisco

New Orleans, January 2010

Supporters

- Sam Sambasivan AT&T
- Andrew Ambrose Alcatel-Lucent
- Gary Nicholl Cisco
- Chris Cole Finisar
- Satoshi Obara Fujitsu Limited
- Hideki Isono Fujitsu Optical Components
- Kazuyuki Mori Fujitsu Optical Components
- Hidehiro Toyoda Hitachi
- Koichiro Seto Hitachi Cable
- Zeng Li Huawei Technologies
- Jeffery Maki Juniper Networks
- Hidenori Takahashi KDDI Labs
- Masaharu Hatano Opnext
- Osamu Ishida NTT
- Satoshi Kodama NTT
- Hirotake Iwadate SEDU
- Farzin Firoozmand Semtech (SMI)
- Eddie Tsumura Sumitomo Electric Industries, Ltd.
- Hirotaka Oomori Sumitomo Electric Industries, Ltd.
- Frank Chang Vitesse

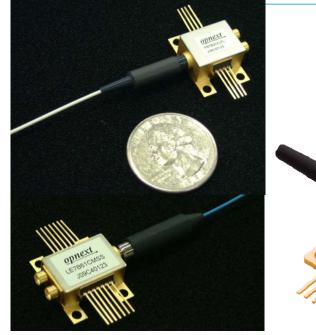
40GBASE-xR Technical Feasibility

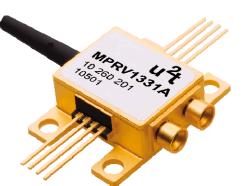
40GbE SMF PMD References

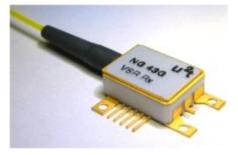
The following HSSG and P802.3ba TF presentations addressed technical feasibility of 40GbE SMF PMD approaches:

http://www.ieee802.org/3/ba/public/....

- hiramoto_01_0908
- mori_01_0908
- mori_02_0908
- traverso_02_0708
- isono_01_0508
- jewell_03_0508
- barbieri_01_0308
- simsarian_01_0308
- traverso_04_0308
- traverso_40_01_0208

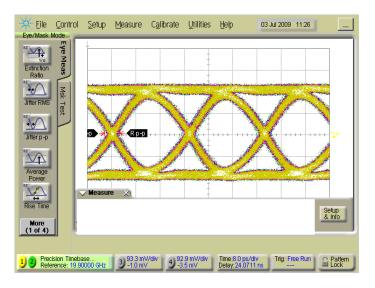

40Gbps SMF Optical Budgets Exist


	VSR2000-3R2 (1550nm)*	VSR2000-3R1 (1310nm)	P1I1-3D1 (1310nm)
Wavelength	1530-1565	1290 - 1330	1307 - 1317
Pout	+3 to 0	+3 to 0	+4 to 0
ER	8.2	8.2	8.2
Psens	-6	-5	-7
Distance	2km	2km	10km
Attenuation	4	4	6
Penalty	2	1	1
Document	G.693	G.693	G.959.1


* VSR2000-3R2 is the only interface known to be deployed

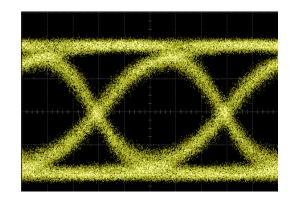
- Supports multiple rates/protocols: OTU3/STM-256/OC-768/40G POS.
- Opportunity for IEEE to leverage past work and select optimized solution for marketplace.

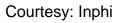
40Gbps Supply Chain Established: Optics



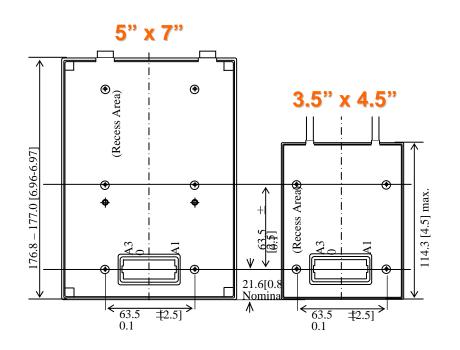
Courtesy: u²t Photonics

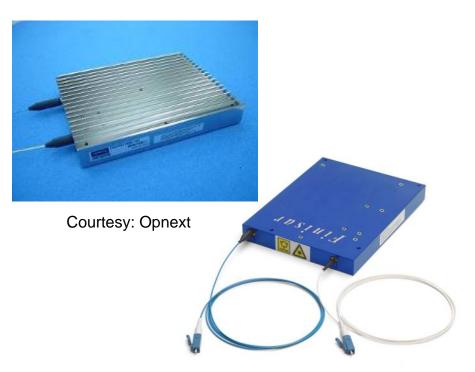
Courtesy: Opnext


- XLMD MSA V1.0 established in 2008 for 40Gbps transmitter and receive optical subassemblies.
- Multiple optical subassemblies available from multiple suppliers.
- Component suppliers developing compact packaging with advanced cost reduced interconnect technologies.


40Gbps Supply Chain Established: Analog & Digital ICs

Courtesy: Semtech


40G TIA



- 40Gbps SerDes commercially available.
 - 3rd Generation ICs offering superior performance with reduced power .
- 40Gbps analog ICs for interfacing to the optics commercially available.
 - Driver ICs & Transimpedance amplifiers with efficient gain & high bandwidth available.
- Multiple rates/protocols supported: OTU3/STM-256/OC-768/40G POS.

40Gbps Supply Chain Established: Module

Courtesy: Finisar

- 40Gbps optical modules commercially available from multiple suppliers.
- Modules based upon 300pin MSA:
 - 1st Generation larger size (5"x7") shipping since 2004.
 - 2nd Generation smaller size & more robust controls & features.
- Multiple rates/protocols supported: OTU3/STM-256/OC-768/40G POS.

New Technology on the Horizon

- Advanced Optics
 - Uncooled transmitter technology demonstrated.
 - Feed-through

λ=1290 nm, Chip on Carrier, 43 Gbps, NRZ, 2⁷-1 PRBS

TLD	25⁰C	55ºC	85ºC
DER	7.47 dB	8.68 dB	9.09 dB
Pmod	8.42 dBm	7.69 dBm	2.93 dBm
VOH	-1.8 V	-1.1 V	-0.3 V
BTB	Lauri 107 Journe 10 25ps		
10-km SMF			

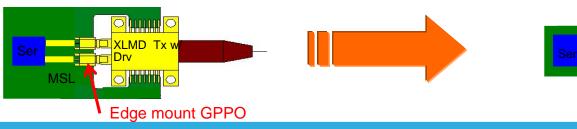
Advances in Electronics

Courtesy: Opnext

200-Waveforms NRZ: Non Return to Zero, PRBS: Pseudo Random Bit Stream

FPC interconnection

- New lower power structures for Bi-CMOS.
- High responsivity transimpedance amplifiers emerging.
- Low cost yet high performance packaging.



OSA w

Drv

FPC (flexible printed circuit)

GPPO edge mount connectors

IEEE 802.3 Ethernet Working Group - 5 Criteria

Summary

- Technical feasibility studies of a 40GbE SMF PMD have been presented and reviewed in previous IEEE P802.3ba work.
- 40Gb/s SMF optical budget established and demonstrated by deployed ITU-T G.693 VSR2000-3R2 links in carrier transport networks.
- 40Gb/s supply chains exist for:
 - optical Tx/Rx components;
 - analog and digital ICs;
 - OTU3/STM-256/OC-768/40G POS optical transponder modules.
- Industry advances in 40G optics and electronics technologies have been achieved and documented.
- CONCLUSION: 40GbE SMF PMD has been demonstrated and proven technically feasible.

Proposed TF Response

- Demonstrated system feasibility
- Proven technology, reasonable testing
- Confidence in reliability
- The operation of an IEEE 802.3 MAC at 40Gb/s has been established by IEEE P802.3ba.
- The principle of building 40G optical PMDs has been proven both technically and operationally feasible by the deployment of ITU-T/SONET-based OTU3/STM-256/OC-768 optical transport interfaces in carrier networks.
- The technology to be utilized in the proposed project will rely on the work of previous IEEE 802.3 standards and activities as well as ITU-T Recommendations. The proposed 40G PMD is expected to leverage and extend available 40GBASE-R and ITU-T G.693 40G VSR technologies. It is recognized these relevant technologies have advanced since the inception of work on related standards.
- The reliability of Ethernet components and systems in the target environments can be projected with a high degree of confidence based on existing 40G deployment experience.