Security Level:

P2P Ethernet Access

A short review and next steps

www.huawei.com

What will be covered

- Pertinent clauses and their outlines
- Clause 114 (25GBASE-LR/ER) table by table
- What's next
- Timelines and Deadlines

P2P by Clause

- Clause 56. Introduction to Ethernet for subscriber access networks
 - Figure 56–1—Architectural positioning of EFM: P2P Topologies
 - 56.1.1 Summary of P2P sublayers
- 58. PMD sublayer and medium, type 100BASE-LX10 and 100BASE-BX10
 - About 36 pages
- 59. PMD sublayer and medium, type 1000BASE-LX10 and 1000BASE-BX10
 - About 29 pages
- 66. Extensions of the 10 Gb/s RS, 100BASE-X & 1000BASE-X PHY for unidirectional transport
 - About 11 pages
- Other applicable clauses
 - 52. PMD sublayer and baseband medium, type 10GBASE-S/L/E (about 43 pages)
 - 114. PMD sublayer and medium, types 25GBASE-LR/ER (about 19 pages)

РНҮ	Rate (b/s)	Fibers	Wavelength (nm)	Coding	Reach (km)	min Insertion Loss (dB)
100BASE-LX	100M	2	1310	8B10B	10	6
100BASE-BX	100M	1	1550D/1310U	8B10B	10	5.5 - 6
1000BASE-LX*	1G	2	1310	8B10B	10	6
1000BASE-BX	1G	1	1490D/1310U	8B10B	10	5.5 - 6

* Defined for both SMF and MMF

Clause 59 1000BASE-LX/BX outline

- 59.1 Overview
- 59.2 PMD functional specs
- 59.2.1 PMD block diagram
- 59.2.2 PMD transmit function
- 59.2.3 PMD receive function
- 59.2.4 PMD signal detect function
- 59.3 PMD-MDI optical specs for 1000BASE-LX10
- 59.3.1 Transmitter optical specs
- 59.3.2 Receiver optical specs
- 59.4 PMD-MDI optical specs for 1000BASE-BX10-D and 1000BASE-BX10-U
- 59.4.1 Transmit optical specs
- 59.4.2 Receiver optical specs
- 59.5 Illustrative 1000BASE-LX10 and 1000BASE-BX10 channels and penalties (informative)
- 59.6 Jitter specs
- 59.7 Optical measurement requirements
- 59.7.1 Test patterns
- 59.7.2 Wavelength and spectral width measurements

- 59.7.3 Optical power measurements
- 59.7.4 Extinction ratio measurements
- 59.7.5 OMA measurements (informative)
- 59.7.6 OMA relationship to extinction ratio and power measurements (informative)
- 59.7.7 Relative intensity noise optical modulation amplitude (RIN12OMA)
- 59.7.8 Transmitter optical waveform (transmit eye)
- 59.7.9 Transmit rise/fall characteristics
- 59.7.10 Transmitter and dispersion penalty (TDP)
- 59.7.11 Receive sensitivity measurements
- 59.7.12 Total jitter measurements (informative)
- 59.7.13 Deterministic or high probability jitter measurement (informative)
- 59.7.14 Stressed receiver conformance test
- 59.7.15 Measurement of the receiver 3 dB electrical upper cutoff frequency
- 59.8 Environmental, safety, and labeling specs
- 59.9 Characteristics of the fiber optic cabling
- 59.10 Protocol implementation conformance statement (PICS)

(Selectively compressed)

Clause 52 10GBASE-S/L/E outline

52.1	Overview
52.1.1	PMD sublayer service interface
52.2	Delay constraints
52.3	PMD MDIO function mapping
52.4	PMD functional specs
52.4.1	PMD block diagram
52.4.2	PMD Transmit function
52.4.3	PMD Receive function
52.4.4	PMD Signal Detect function
52.4.5	PMD_reset function
52.4.6	PMD_fault function
52.4.7	PMD_global_transmit_disable function
52.4.8	PMD_transmit_fault function
52.4.9	PMD_receive_fault function
52.5	PMD-MDI optical specs 10GBASE-S
52.5.1	10GBASE-S transmitter optical specs
52.5.2	10GBASE-S receive optical specs
52.5.3	10GBASE-S link power budgets (info).
52.6	PMD-MDI optical specs 10GBASE-L
52.7	PMD-MDI optical specs 10GBASE-E
52.8	Jitter specs for 10GBASE-R / W
52.8.1	Sinusoidal jitter for receiver conformance test
52.9	Optical measurement requirements
52.9.1	Test patterns.
52.9.2	λ 0, spectral width, & SMSR measurements

(Selectively compressed)

- 52.9.3 Average optical power measurements 52.9.4 Extinction ratio measurements 52.9.5 OMA test procedure 52.9.6 **RINxOMA** measuring procedure 52.9.7 Transmitter optical waveform. 52.9.8 Receiver sensitivity measurements 52.9.9 Stressed receiver conformance test Tx and dispersion penalty measurement 52.9.10 Measurement Rx3 dB elec upper cutoff freq 52.9.11 52.10 Environmental specs. 52.10.1 General safety 52.10.2 Laser safety 52.10.3 Installation 52.11 Environment 52.11.1 Electromagnetic emission 52.11.2 Temperature, humidity, and handling 52.12 **PMD** labeling requirements 52.13 Fiber optic cabling model 52.14 Characteristics of the fiber optic cabling (channel) 52.14.1 Optical fiber and cable 52.14.2 Optical fiber connection. **10GBASE-E** attenuator management 52.14.3 Medium Dependent Interface (MDI) requirements 52.14.4
 - 52.15 PICS

Clause 114 25GBASE-LR/ER outline

114.1	Overview
114.1.1	Bit error ratio
114.2	PMD service interface
(105.4)	(25GMII) Service interface dpec
114.3	Delay constraints.
114.4	PMD MDIO function mapping.
114.5	PMD functional specs
114.5.1	PMD block diagram
114.5.2	PMD transmit function
114.5.3	PMD receive function.
114.5.4	PMD global signal detect function
114.5.5	PMD reset function.
114.5.6	PMD global tx disable function (optional)
114.5.7	PMD fault function (optional)
114.5.8	PMD transmit fault function (optional)
114.5.9	PMD receive fault function (optional)
114.6	PMD-MDI optical specs for 25GBASE-
LR/ER	
114.6.1	25GBASE-LR/ER transmitter optical specs
114.6.2	25GBASE-LR/ER receive optical specs
114.6.3	25GBASE-LR/ER link power budgets (ill)

114.7 Def of optical params and mea methods

- Test patterns for optical parameters 114.7.1
- 114.7.2 Wavelength and (SMSR)
- 114.7.3 Average optical power
- 114.7.4 Optical Modulation Amplitude (OMA)
- 114.7.5 Transmitter and dispersion penalty (TDP)
- 114.7.5.1 Reference transmitter requirements
- 114.7.5.2 Channel requirements
- 114.7.5.3 Reference receiver requirements
- 114.7.5.4 Test procedure.
- 114.7.6 Extinction ratio
- 114.7.7 Relative Intensity Noise (RIN200MA).
- 114.7.8 Transmitter optical waveform (transmit eye)
- 114.7.9 Receiver sensitivity.
- 114.7.10 Stressed receiver sensitivity

Safety, installation, environment, and 114.8 labeling

- Safety, installation, environment, and labeling (112.8)
- Fiber optic cabling model 114.9
- 114.10 Char of the fiber optic cabling (channel)
- (88.11.1) Optical fiber cable.
- (88.11.2) Optical fiber connection
- 114.11 Reg for iop between 25GBASE-LR/ER.
- 114.12 PICS

(Selectively compressed)

An outline to consider

XX.1	Overview
XX.2	PMD sublayer service interface
(105.4/46	6.1.7) 25GMII/XGMII service interface spec
XX.3	Delay constraints
XX.4	PMD MDIO function mapping
XX.5	PMD functional specs
XX.5.1	PMD block diagram
XX.5.2	PMD transmit function
XX.5.3	PMD receive function
XX.5.4	PMD signal detect function
XX.5.5 (5	59/114) PMD_reset function
XX.5.6 (5	59/114) PMD_fault function
XX.5.7 (5	59/114) PMD_global_tx_disable function
XX.5.8 (5	59/114) PMD_transmit_fault function
XX.5.9 (5	59/114) PMD_receive_fault function
XX.6	PMD to MDI optical specs
XX.6.1	PMD transmitter optical specs
XX.6.2	PMD receiver optical specs
XX.6.3 (5	59/114) PMD link power budgets (informative)
XX.7 {52	/59) PMD to MDI optical specs
XX.7.2 (5	52/59) PMD transmit optical specs
XX.7.1 (5	52/59) Receiver optical specs
XX.8 (52	,59) Jitter specs

KEY:

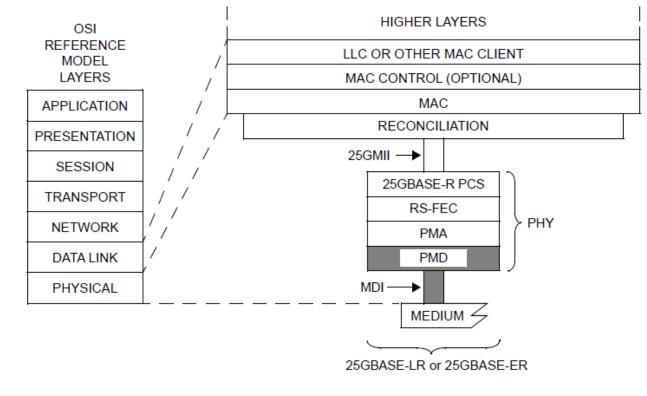
Text common to 52, 59 & 114 Text common to 2 of 52, 59, & 114 Proposed xRef

XX.9	Def of optical param & mea. methods.
XX.9.1	Test patterns
XX.9.2	λ 0, spectral width, & SMSR measurements
XX.9.3	Average optical power measurements
XX.9.4	Extinction ratio measurements
XX.9.5	Optical modulation amplitude (OMA) test
procedu	re
XX.9.6	RIN optical modulation amplitude
XX.9.7	Transmitter and dispersion penalty (TDP)
XX.9.8	Receive sensitivity measurements
XX.9.9	Stressed receiver conformance test
XX.9.10	
upper cu	itoff freq
XX.10 labeling.	Safety, installation, environment, and
Ŭ	/52.10.x)General & Laser safety, Installation
, Enviror	ment, Electromagnetic emission,
Tempera	ature, humidity, and handling, PMD labeling
requirem	ients
XX.11	Fiber optic cabling model
XX.12	Characteristics of the fiber optic cabling
•	(51.14.x)Optical fiber cable/connection,
Connect	ion iol, Max discrete reflectance
XX.12.5	(52,59) Medium Dependent Interface (MDI)

XX.13 PICS

Overview

Table 114–1—Physical Layer clauses associated with the 25GBASE-LR and 25GBASE-ER PMDs


Associated clause	25GBASE-LR	25GBASE-ER
106—RS	Required	Required
106—25GMII ^a	Optional	Optional
107—PCS for 25GBASE-R	Required	Required
108—RS-FEC ^b	Required	Required
109—PMA for 25GBASE-R	Required	Required
109A—25GAUI C2C	Optional	Optional
109B—25GAUI C2M	Optional	Optional
78—Energy Efficient Ethernet	Optional	Optional

^aThe 25GMII is an optional interface. However, if the 25GMII is not implemented, a conforming implementation must behave functionally as though the RS and 25GMII were present.

^bThe option to bypass the Clause 108 RS-FEC correction function is not supported.

ETHERNET LAYERS

25GMII = 25 GIGABIT MEDIA INDEPENDENT INTERFACE LLC = LOGICAL LINK CONTROL MAC = MEDIA ACCESS CONTROL MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER PHY = PHYSICAL LAYER DEVICE

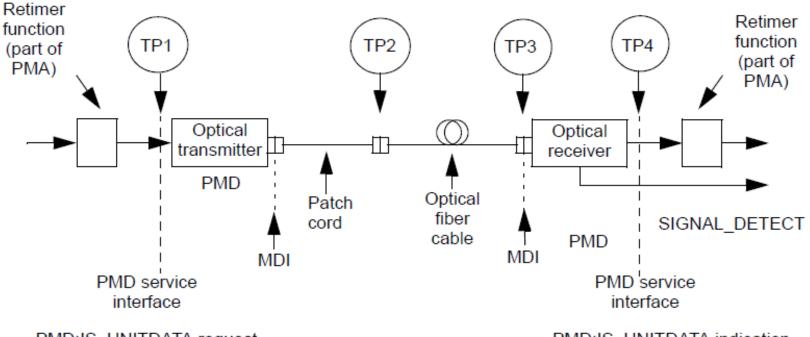

PMA = PHYSICAL MEDIUM ATTACHMENT PMD = PHYSICAL MEDIUM DEPENDENT RS-FEC = REED-SOLOMON FORWARD ERROR CORRECTION LR = PMD FOR SINGLE-MODE FIBER - 10 km ER = PMD FOR SINGLE-MODE FIBER - 40 km

Figure 114–1—25GBASE-LR and 25GBASE-ER PMDs relationship to the ISO/IEC Open Systems Interconnection (OSI) reference model and the IEEE 802.3 Ethernet model

Architecture

Block diagram

PMD:IS_UNITDATA.request

PMD:IS_UNITDATA.indication

For clarity, only one direction of transmission is shown

Figure 114–2—Block diagram for 25GBASE-LR and 25GBASE-ER transmit/receive paths

Variable mapping & operating ranges

Table 114–2—MDIO/PMD control variable mapping

MDIO control variable PMA/PMD register name		Register/bit number	PMD control variable
Reset	PMA/PMD control 1 register	1.0.15	PMD_reset
Global PMD transmit disable	PMD transmit disable register	1.9.0	PMD_global_transmit_disable

Table 114–3—MDIO/PMD status variable mapping

MDIO status variable	PMA/PMD register name	Register/ bit number Table 114_5_25GBASE-	s variable R and 25GBASE-ER operating ranges
Fault	PMA/PMD status 1 register		
Transmit fault	PMA/PMD status 2 register	PMD type	Required operating range ^a
Receive fault	PMA/PMD status 2 register	25GBASE-LR	2 m to 10 km
			2 m to 30 km
Global PMD receive signal detect	PMD receive signal detect registe	25GBASE-ER	2 m to 40 km ^b

^aThe RS-FEC correction function may not be bypassed for any operating distance. ^bLinks longer than 30 km for the same link power budget are considered engineered links. Attenuation for such links needs to be less than the worst case specified for IEC 60793-2-50 type B1.1, type B1.3, or type B6_a single-mode fiber.

Table 114–6—25GBASE-LR and 25GBASE-ER transmit characteristics

Description	25GBASE-LR	25GBASE-ER	Unit
Signaling rate (range)	25.78125	± 100 ppm	GBđ
Center wavelength (range)	1295 to 1325	1295 to 1310	nm
Side-mode suppression ratio (SMSR), (min)	3	30	đB
Average launch power (max)	2	6	dBm
Average launch power ^a (min)	-7	-3	dBm
Optical Modulation Amplitude (OMA), (max)	2.2	6	dBm
Optical Modulation Amplitude (OMA) ^b , (min)	-4	0	dBm
Launch power in OMA minus TDP (min)	-5	-1	dBm
Transmitter and dispersion penalty (TDP), (max)	2.7	2.7	dB
Average launch power of OFF transmitter (max)		20	dBm
Extinction ratio (min)	3	4	dB
RIN ₂₀ OMA (max)	-1	30	dB/Hz
Optical return loss tolerance (max)	20		đB
Transmitter reflectance ^c (max)	-26		dB
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3} Hit ratio 5×10 ⁻⁵ hits per sample.	{0.31, 0.4, 0.45	, 0.34, 0.38, 0.4}	

^aAverage launch power (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance. ^bEven if the TDP < 1 dB, the OMA (min) must exceed this value.

^cTransmitter reflectance is defined looking into the transmitter.

Table 114-7-25GBASE-LR and 25GBASE-ER receive characteristics

Description	25GBASE-LR	25GBASE-ER	Unit
Signaling rate (range)	25.78125 ± 100 ppm		GBd
Center wavelength (range)	1295 t	o 1325	nm
Damage threshold ^a (min)	3	-3	dBm
Average receive power (max)	2	-4	dBm
Average receive power ^b (min)	-13.3	-21	dBm
Receive power (OMA), (max)	2.2	-4	dBm
Receiver reflectance (max)	-26		dB
Receiver sensitivity (OMA) ^c , (max)	-12	-19	dBm
Stressed receiver sensitivity (OMA) ^d , (max)	-9.5	-16.5	dBm
Conditions of stressed receiver sensitivity test	•		
Stressed eye closure ^e	2.5	2.5	dB
Stressed eye J2 Jitter ^e	0.27	0.27	л
Stressed eye J4 Jitter ^e	0.39	0.39	л
SRS eye mask definition {X1, X2, X3, Y1, Y2, Y3} Hit ratio 5×10 ⁻⁵ hits per sample.	{0.31, 0.4, 0.45,	0.34, 0.38, 0.4}	

^aThe receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.

^bAverage receive power (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

^cReceiver sensitivity (OMA), (max) is informative.

^dMeasured with conformance test signal at TP3 (see 114.7.10) for the BER specified in 114.1.1.

^eStressed eye closure, stressed eye J2 Jitter, and stressed eye J4 Jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Rx Spec

Link budgets

Table 114-8-25GBASE-LR and 25GBASE-ER illustrative link power budgets

Parameter	25GBASE-LR	25GBASE-ER		Unit
Power budget (for maximum TDP)	9.7	20.7		dB
Operating distance	10	30	40 ^a	km
Channel insertion loss	6.3 ^b	15 ^b	See 114.9 ^a	dB
Maximum discrete reflectance	See 114.10	See 114.10		dB
Allocation for penalties ^c (for maximum TDP)	3.4	20.7 minus maximum channel insertion loss per Table 114–12		dB
Additional insertion loss allowed	0	Maximum 0 channel inser- tion loss per Table 114–12 minus 15		dB

^aLinks longer than 30 km are considered engineered links. Attenuation for such links needs to be less than the worst case for cables containing IEC 60793-2-50 type B1.1, type B1.3, or type B6_a single-mode cabled optical fiber.
^bThe channel insertion loss is calculated using the maximum distance specified in Table 114-5 and fiber attenuation of 0.43 dB/km at 1295 nm plus an allocation for connection and splice loss given in 88.11.2.1.

^cLink penalties are used for link budget calculations. They are not requirements and are not meant to be tested.

Channel characteristics

Table 114-11-Fiber optic cabling (channel) characteristics

Description	25GBASE-LR	25GBASE-ER		Unit
Operating distance (max)	10	30 40		km
Channel insertion loss ^{a, b} (max)	6.3	See Table 114–12		dB
Channel insertion loss (min)	0	10 ^c		dB
Positive dispersion ^b (max)	22.6	27.6	36.8	ps/nm
Negative dispersion ^b (min)	-27.9	-83.7	-111.6	ps/nm
DGD_max ^d	8	10.3	10.3	ps
Optical return loss (min)	21	21	21	dB

^aThese channel insertion loss values include cable, connectors, and splices

^o Over the wavelength range 1295	
25GBASE-ER.	
Channel insertion loss (min) may	
^d DGD_max is the maximum different	

Table 114–14—Channel insertion loss requirements for interoperation

ay 1 ffen	Direction	Min loss	Max loss	Unit
	25GBASE-LR transmitter to 25GBASE-ER receiver	6.2	13.3	dB
	25GBASE-ER transmitter to 25GBASE-LR receiver	4	10.3	dB

What is needed?

Adaptation for 10 Gb/s based on

- Clause 44. Introduction to 10 Gb/s baseband network,
- Clause 48. Physical Coding Sublayer (PCS) and Physical Medium Attachment (PMA) sublayer, type 10GBASE-X, and
- Clause 49. Physical Coding Sublayer (PCS) for 64B/66B, type 10GBASE-R
 Could also consider 256B/257B encoding based on 91.5.2.5
- Clause 52. PMD sublayer and baseband medium type 10GBASE-S/L/E

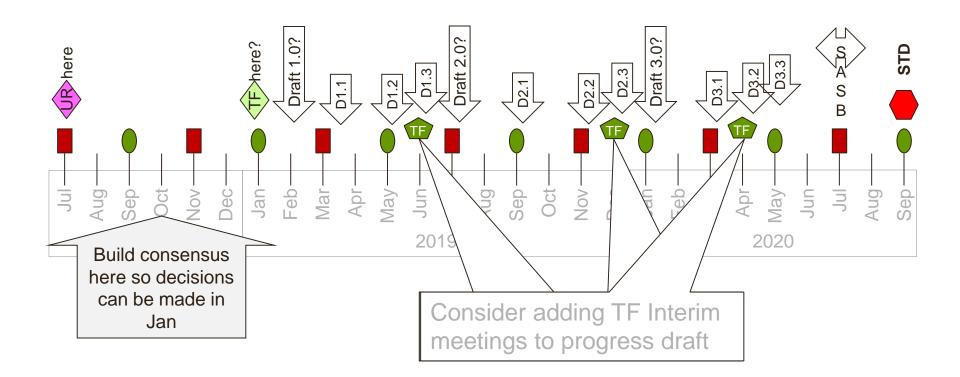
• Adaptation for 25 Gb/s based on

- Clause 105. Introduction to 25 Gb/s networks.
- Clause 106. Reconciliation Sublayer (RS) and Media Independent Interface (25GMII) for 25 Gb/s operation, and
- Clause 107. Physical Coding Sublayer (PCS) for 64B/66B, type 25GBASE-R
 Do we want to consider Nx25G-EPON PCS instead?
- Clause 88. PMD sublayer and medium, type 100GBASE-LR4 and 100GBASE-ER4 <OR>

Clause 114. PMD sublayer and medium, types 25GBASE-LR/ER

• Basic PMD choices

- Select wavelength plan(s) (1270 nm / 1350 nm ?)
- Select optical budgets (one for 10 km, another for 20 km at each rate?)
- Select optional FEC (or maybe same optical budget with & without FEC)?


Misc Thoughts

Possible distractions to be avoided

- MMF versions
- 2 fiber (100BASE-LX / 1000BASE-LX like) versions
- How can we accelerate the process?
 - Use the time between now and Jan (when we hopefully become a Task Force) to achieve consensus on big ticket items
 - Wavelengths
 - Optical Budgets
 - □ FEC / no FEC
 - □ Line code
 - •••••
 - Reference existing text whenever possible
 - Agree on an aggressive timeline
 - Allow for Task Force interim meetings to close out comments
 - Be aware of submittal deadlines

How fast can we run?

Important calendar dates

Group	Start	Days	Туре	Group	Start	Days	Туре	
SASB	12-Jun-18	3		802.3 WG	14-Jan-19	5	I	NesCom/R
802.3 WG	9-Jul-18	4	Р	NesCom/RevCom	28-Jan-19	-	Tel	Submittal D
SASB	27-Jul-18	-	Tel	802.3 WG	14-Mar-19	4	Р	27-Jul-
NesCom/RevCom	6-Sep-18	-	Tel	SASB	19-Mar-19	3		6-Sep-
802.3 WG	10-Sep-18	5	1	NesCom/RevCom	2-May-19	-	Tel	15-Oct
NesCom/RevCom	15-Oct-18	-	Tel	802.3 WG	20-May-19	5	I	18-Dec
802.3 WG	15-Nov-18	4	Р	SASB	13-Jul-19	-	Tel	8-Feb-
SASB	3-Dec-18	3		802.3 WG	18-Jul-19	4	Р	22-Mar
				NesCom/RevCom	4-Sep-19	-	Tel	3-May
				SASB	5-Sep-19	-	Tel	26-Jul-
				802.3 WG	9-Sep-19	5	I	17-Sep
				SASB	5-Nov-19	3		
				802.3 WG	14-Nov-19	4	Р	

 NesCom/RevCom

 Submittal Deadlines:

 27-Jul-18

 6-Sep-18

 15-Oct-18

 18-Dec-18

 8-Feb-19

 22-Mar-19

 3-May-19

 26-Jul-19

 17-Sep-19

Deadlines that must be met

Action	Days	Rule explaination
Draft PAR, CSD responses, and Objectives submittal to	(30)	No requirement in rules but generaly included in 30
WG	(50)	day meeting announcement
Draft DAB and CSD responses submittal to EC	30	30 Days in advance of plenary meeting where draft PAR
Draft PAR and CSD responses submittal to EC		and CSD responses will be considered
PAR submittal to NesCom and SASB	40/50	40 days, 50 days for last meeting of year, submittal can
PAR Submittal to Nescom and SASB	40/50	occur before WG/EC approval
Initial Task Force Pallot period and Pesirculation		There are no rules or requirement for Task Force
Initial Task Force Ballot period and Recirculation	-	review, no requirement to have one
		The draft has to pre-submitted to the WG 10 days prior
Draft Working Group ballot request preview	10	to the request for approval to proceed to WG ballot
Initial Working Group Ballot period	30	
Working Group Recirculation Ballot period	15	
Sponsor Ballot Group formation period	30	
Mandatory editorial Coordination (MEC)	30	Has to be performed on a draft before it proceeds to
Draft submittal for Sponsor Pallot (after MG/EC		Sponsor ballot, worst case time, generally a lot quicker
Draft submittal for Sponsor Ballot (after WG/EC approval)	5	Worst case time, generally a lot quicker
Initial Sponsor Ballot period	30	
Draft submittal for Sponsor Recirculation Ballot	5	Worst case time, generally a lot quicker
Sponsor Recirculation Ballot period	15	
Draft final submittal to RevCom and SASB (after WG/EC approval)	40/50	40 days, 50 days for last meeting of year, submittal can occur before EC approval, also conditional approval

Thank you www.huawei.com

BACK-UP

Overview

Table 59–1—Classification of 1000BASE-LX10 and 1000BASE-BX10 PMDs

Description	1000BA	SE-LX10	1000BASE- BX10-D	1000BASE- BX10-U	Unit
Fiber type ^a	B1.1, B1.3 SMF	50, 62.5 μm MMF	B1.1, B		
Number of fibers	2	2	1		
Typical transmit direction	N/A Downstrea		Downstream	Upstream	
Nominal transmit wavelength	1310	1310	1490	1310	nm
Minimum range	0.5 m to 10 km	0.5 m to 550 m ^b	0.5 m to 10 km		
Maximum channel insertion loss ^c	6.0 2.4 5.5		6.0	dB	

^aPer IEC 60793-2.

^bSee Table 59–16 for fiber and cable characteristics.

^cAt the nominal operating wavelength

Architecture

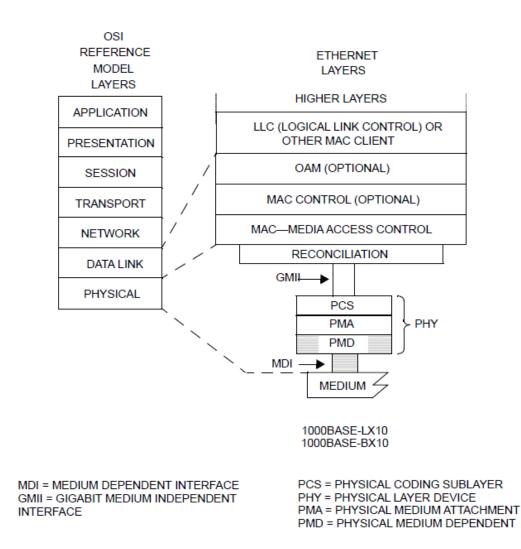


Figure 59–1—1000BASE-LX10 and 1000BASE-BX10 PMDs relationship to the ISO/IEC Open Systems Interconnection (OSI) reference model and the IEEE 802.3 Ethernet model

Block Diagram

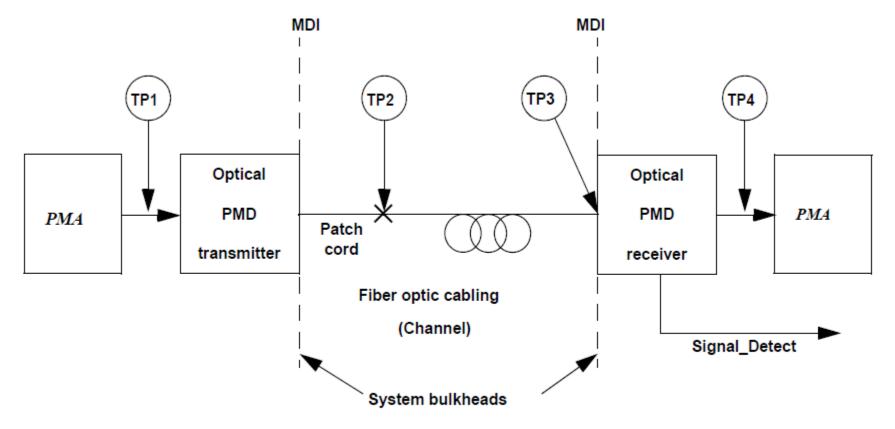


Figure 59–2—1000BASE-X block diagram

Table 59-6-1000BASE-BX10-D and 1000BASE-BX10-U transmit characteristics

		Description	1000BASE- BX10-D	1000BASE- BX10-U	Unit
BX10 T 2	X	Nominal transmitter type ^a	Longwa	ave Laser	
RMS spect	ral width	Signaling speed (range)	1.25±	100 ppm	GBd
(max) from Table 59-4		Operating wavelength range ^b	1480 to 1500	1260 to 1360	nm
is 3.5 nm		RMS spectral width (max)	See Ta	ble 59–4	nm
Table 59–4		Average launch power (max)	-3		dBm
	spec	Average launch power (min)		-9	dBm
Center wavelength	RMS spectral wid (max) ^a	Average launch power of OFF transmitter (max)	-45		dBm
nm	nm	Extinction ratio (min)	6		dB
1260	2.09	RIN ₁₂ OMA (max)	_:	-113	
1270	2.52	Optical return loss tolerance (max)	1	12	dB
1280	3.13	Launch OMA		8.2	dBm
1286				51)	(µW)
1290		Transmitter eye mask definition {X1, X2, Y1, Y2, Y3}	0.00.0.275.0	20.0.20.0.20	UI
1297	3.50	Transmuter eye mask deminition $\{X1, X2, 11, 12, 15\}$	0.22, 0.575, 0	0.20, 0.20, 0.30	01
1329	0.00	Transmitter reflectance (max)	-10	-6	dB
1340		Transmitter and dispersion penalty, TDP (max)	-	.3	dB
1343		• • • • • •	5.5		ub
1350	3.06	Decision timing offsets for transmitter and dispersion penalty (min)	± 80		ps
1360	2.58	^a The nominal device type is not intended to be a requirement on th	he source type, ar	ting the	
1480 to 1500	0.88	transmitter characteristics specified may be substituted for the nomin			

transmitter characteristics specified may be substituted for the nominal device type.

^aThese limits for the 1000BASE-LX10 transmitter wavelengths may be found by interpolation.

^bThe great majority of the transmitted spectrum must fall within the operating wavelength range. The allowable range of central wavelengths is narrower than the operating wavelength range by the actual RMS spectral width at each extreme.

Table 59–7—1000BASE-BX10-D and 1000BASE-BX10-U receive characteristics

		Description	1000BASE-BX10-D	1000BASE-BX10-U	Unit
		Signaling speed (range)	1.25 ± 1	00 ppm	GBd
BX10 Rx		Wavelength (range)	1260 to 1360	1480 to 1500	nm
Also see		Bit error ratio (max)	10-12		
Table 59–10— 1000BASE-LX10 and 1000BASE-BX10 jitter budget on SMF (informative)		Average receive power (max)	-	3	dBm
		Receive sensitivity (max)	-1	9.5	dBm
		Receiver sensitivity as OMA (max)		8.7 3.4)	dBm (µW)
(intornative)		Receiver reflectance (max)	-12		dB
		Stressed receive sensitivity (max) ^a	-15.4		dBm
		Stressed receiver sensitivity as OMA (max)		4.6 5)	dBm (µW)
ole 59–10—1000BASE-LX	(10 and 100	Vertical eye-closure penalty (min) ^b	2	.6	dB
	To	Receive electrical 3 dB upper cutoff frequency (max)	15	00	MHz
Reference point	UI	Signal detect threshold (min)		45	dBm
TP1 TP1 to TP2	0.240	Stressed eye jitter (min)	0.3		UI pk-pk
TP1 to TP2 TP2	0.334		637		
TP2 to TP3	0.481	Jitter corner frequency	6.	57	kHz
TP3	0.119	Sinusoidal jitter limits for stressed receiver	0.05, 0.15		UI
TP3 to TP4	0.332	conformance test (min, max)			
TP4		^a The stressed receiver sensitivity is optional. ^b Vertical eye closure penalty and jitter specifications are t	est conditions for measure	ring stressed receiver sense	sitivity They

^bVertical eye closure penalty and jitter specifications are test conditions for measuring stressed receiver sensitivity. They are not required characteristics of the receiver.

Channel Penalties

Table 59–8—Illustrative 1000BASE-LX10 and 1000BASE-BX10 channel and penalties

PMD type	1000BASE-LX10		1000BASE- BX10-D	1000BASE- BX10-U	Unit
Fiber type	B1.1,B1.3 SMF	50μm, 62.5μm MMF	B1.1, B1.3 SMF		
Measurement wavelength for fiber	1310	1300	1550 1310		nm
Nominal distance	10	0.55	10		km
Available power budget	10.5	8.5	10.5		dB
Maximum channel insertion loss ^a	6.0	2.4	5.5 6.0		dB
Allocation for penalties ^b	4.5	6.1	5.0 4.5		dB

^aThe maximum channel insertion loss is based on the cable attenuation at the target distance and nominal measurement wavelength. The channel insertion loss also includes the loss for connectors, splices and other passive components.

^bThe allocation for penalties is the difference between the available power budget and the channel insertion loss; insertion loss difference between nominal and worse case operating wavelength is considered a penalty.

OPTIONAL STRAW POLLS

Straw Poll

I would support downstream center wavelength of about:

- 1. 1270 ____
- 2. 1290 _____
- 3. 1310 _____
- 4. 1320 ____
- 5. 1330
- 6. 1340 ____
- 7. 1350 ____
- 8. Other
- 9. Don't know____

(Chicago rules)

Straw Poll

I would support upstream center wavelength of about:

- 1. 1270 ____
- 2. 1290 _____
- 3. 1310 _____
- 4. 1320 ____
- 5. 1330
- 6. 1340 ____
- 7. 1350 ____
- 8. Other
- 9. Don't know____

(Chicago rules)

