Contribution to
The IEEE 802.3 NG-EPON Study Group Meeting, Nov. 10-12, 2015

NRZ-NFC for 28G-PON

Frank Effenberger
Fixed Access Network Research
Futurewei Technologies, Huawei R&D USA

Acknowledgements:
Lei Zhou, Minghui Tao, Shuchang Yao, Ding Zou, and Xiang Liu for technical contributions.
Potential 25G PON Solutions

- NG-EPON has objectives for:
 - 25 Gb/s data rate
 - Same optical power budget as 10G-EPON (reuse ODN)

- Two main approaches being actively studied.
 - Use higher modulation formats such as Duobinary or PAM4
 - Using low cost, low bandwidth optical/electronic components
 - PAM4, 25 Gb/s DS based on 10G EML and APD demonstrated\cite{1}
 - receiver sensitivity -19.5 dBm @ 10^{-3}, 20 km fiber, C-band
 - Use DSP to relax bandwidth needs of optical/electronic components
 - A Narrow filter compensation (NFC) technique was verified as a practical solution
 - Single-wavelength 488 Gb/s using components with a 3 dB overall bandwidth of about one quarter of the modulation baud has been achieved using NFC \cite{2}
28G NRZ-NFC Study

- Use NRZ-NFC technique to achieve 25 Gb/s net data rate with the following benefits:
 - Higher receiver sensitivity due to NRZ and DSP
 - NRZ modulation provides high optical power budget due to its high receiver sensitivity.
 - Low dispersion penalty via NFC
 - Low cost via 10 GHz TOSA/ROSA (enabled by NFC)
- Optimize FEC overhead in this bandwidth-limited transmission
28G NRZ-NFC PON Proof-of-Concept

- DSP in NRZ-NFC transmitter & receiver mitigate inter-symbol interference caused by bandwidth limitations & fiber dispersion
 - Commercially available 10G EML/APD minimize cost
 - No DSP at transmitter.
 - In receiver normal clock recovery algorithm (enabled by NFC); with simple DSP (less than 13 tap time domain equalization plus only 2 state maximum likelihood sequence estimation (MLSE))

- 20 km transmission using C-band conducted
 - Aims to accommodate any potential 25G-PON wavelength plan
28G NRZ-NFC PON Proof-of-Concept

Transmitter
a. After transmitter DAC
b. After transmitter AMP
c. Transmitter output of 10G EML

![Images of transmitter outputs]

Receiver
d. Output of APD (0 km, B2B)
e. Output of APD (20 km)
The 10 dB bandwidth of the entire link is only ~10 GHz.

It is important to specify the bandwidth at various attenuations (e.g., 3dB, 10dB, 20dB…) in order to reliably predict the transmission performance.
28G NRZ-NFC Experiment Results

Key Performance
- Raw data rate: 28Gb/s
- Receiver Sensitivity:
 - -27dBm @ 1X10^{-3}, B2B
 - -25dBm @ 1X10^{-3}, 20km fiber
- Optical Power Budget
 (with 5 dBm EML power):
 - 30dB @ 20km, C-Band

Advantages
- High receiver sensitivity
 (advanced DSP and optics)
- High optical power
 (high-quality EML)
- Low CD penalty
 (channel equalization in DSP)
Impact of FEC Overhead on Performance

- Two product BCH codes compared for a data rate of 25 Gb/s
 - (508,480,3)×(508,480,3), 12% overhead, 28 Gbps
 - BER threshold 5×10^{-3} for post FEC BER 10^{-12}
 - (480,434,5)×(472,435,4), 20% overhead, 30 Gbps
 - BER threshold 1.1×10^{-2} for post FEC BER 10^{-12}

- 12% overhead FEC outperformed 20% overhead FEC by 0.2 dB and 0.6 dB @ B2B and 20km, respectively

- 12% overhead FEC strikes a good balance between FEC gain and bandwidth-limitation induced performance penalty for the hardware platform and DSP used, achieving
 - Receiver sensitivity: -26.5 dBm @ 5×10^{-3}
 - Power budget: 31.5 dB after 20 km in C-band
Impact of FEC Overhead on Performance

Experiment Measured post-FEC BER vs. pre-FEC BER

Experiment Measured BER performance versus ROP
Summary

- NRZ-NFC offers a high-performance/low-cost solution for 25G-EPON.
 - High receiver sensitivity: \(-28 \text{ dBm} @ 5\times10^{-3} \text{ (B2B)}\)
 - High dispersion tolerance: \(-26.5 \text{ dBm} @ 5\times10^{-3} \text{ (20 km, C-band)}\)
 - Low-bandwidth optics: 10 GHz class EML and APD
 - Power budget: 31.5 dB without optical amplifier (ODN reuse)
- 12% overhead FEC is a good option
- Experimental results show that 28G NRZ-NFC based EPON will offer co-existence with 1G/10G-EPON and can accommodate any wavelength plan to be chosen
- DAC/ADC/DSP may be implemented with low power consumption and small form factor, meeting the requirements for implementations in OLT and ONU.
- The use of DSP may enable a smooth upgrade path to 50G and 40G without changing the optics and PON infrastructure.
- Future work on upstream transmission is needed
Thank you

www.huawei.com
Bibliography
