Server Bandwidth Implications for the Next Higher Speed of Ethernet

David Chalupsky, Intel Corporation

IEEE 802.3 Higher Speed Ethernet Consensus Ad Hoc September 2012 Geneva, CH

Goal

• Review Server Ethernet connectivity history and forecast to project need for higher speed Ethernet

How Will Server Ports Impact HSE?

- Are we in a hurry for a 400Gbit NIC? 1Tbit NIC?
 - No, not this decade...
- But bi-sectional bandwidth is dependent on the links in the aggregation layer.
- "Top of Rack" topologies connect a small number of servers in one rack to the LAN via an *even smaller* number of uplink ports.
- Ratio of total access bandwidth to total uplink bandwidth is the "oversubscription ratio."
 - High oversubscription is bad for applications with high server-to-server communication

Increase in Server access port speed drives the need for higher uplink bandwidth

Fat and Flat

- Contemporary applications require more communication between servers than in the past.
 - Search, indexing, databases, technical computing, analytics on "Big Data"
- Ideal network to serve these apps has non-blocking, full BW between all servers
 - Sounds expensive...
 - Let's look for a reasonable compromise...

A Simple Look at Oversubscription

- Let's take a typical ToR switch...
- 48 access ports, 2-4 uplink ports

	Access		Uplink	Total	Total	
Number of	Port	Number	Port	Access	Uplink	Oversubs
Access	Speed	of Uplink	Speed	BW	BW	cription
Ports	(Gbps)	Ports	(Gbps)	(Gbps)	(Gbps)	Rate
48	1	4	10	48	40	1.2
48	10	4	10	480	40	12.0
48	10	2	40	480	80	6.0
48	10	4	40	480	160	3.0
48	40	4	40	1920	160	12.0
48	40	2	100	1920	200	9.6
48	40	4	100	1920	400	4.8
48	40	2	400	1920	800	2.4
48	40	4	400	1920	1600	1.2
48	100	4	100	4800	400	12.0
48	100	2	400	4800	800	6.0
48	100	4	400	4800	1600	3.0
48	100	2	1000	4800	2000	2.4
48	100	4	1000	4800	4000	1.2

Baseline: $48x1G \rightarrow 4x10G = 1.20 \text{ OS ratio}$

...that's really good.

A Simple Look at Oversubscription (2)

- Let's take a typical ToR switch...
- 48 access ports, 2-4 uplink ports

		Access		Uplink	Total	Total	
	Number of	Port	Number	Port	Access	Uplink	Oversubs
	Access	Speed	of Uplink	Speed	BW	BW	cription
	Ports	(Gbps)	Ports	(Gbps)	(Gbps)	(Gbps)	Rate
	48	1	4	10	48	40	1.2
	48	10	4	10	480	40	12.0
ı	48	10	2	40	480	80	6.0
l	48	10	4	40	480	160	3.0
	48	40	4	40	1920	160	12.0
	48	40	2	100	1920	200	9.6
	48	40	4	100	1920	400	4.8
	48	40	2	400	1920	800	2.4
	48	40	4	400	1920	1600	1.2
	48	100	4	100	4800	400	12.0
	48	100	2	400	4800	800	6.0
	48	100	4	400	4800	1600	3.0
	48	100	2	1000	4800	2000	2.4
	48	100	4	1000	4800	4000	1.2

10G access w/ 10G uplink was horribly oversubscribed.

40G uplinks offer good options for 3.0->6.0 OS for 10G access

A Simple Look at Oversubscription (3)

- Let's take a typical ToR switch...
- 48 access ports, 2-4 uplink ports

		Access		Uplink	Total	Total	
	Number of	Port	Number	Port	Access	Uplink	Oversubs
	Access	Speed	of Uplink	Speed	BW	BW	cription
	Ports	(Gbps)	Ports	(Gbps)	(Gbps)	(Gbps)	Rate
	48	1	4	10	48	40	1.2
	48	10	4	10	480	40	12.0
	48	10	2	40	480	80	6.0
	48	10	4	40	480	160	3.0
1	48	40	4	40	1920	160	12.0
	48	40	2	100	1920	200	9.6
	48	40	4	100	1920	400	4.8
	48	40	2	400	1920	800	2.4
	48	40	4	400	1920	1600	1.2
	48	100	4	100	4800	400	12.0
	48	100	2	400	4800	800	6.0
	48	100	4	400	4800	1600	3.0
	48	100	2	1000	4800	2000	2.4
	48	100	4	1000	4800	4000	1.2

40G access needs 100G uplinks... at least.

400G uplinks offer GREAT options for 1.2->2.4 OS for 40G access

A Simple Look at Oversubscription (4)

- Let's take a typical ToR switch...
- 48 access ports, 2-4 uplink ports

		1		1		
	Access		Uplink	Total	Total	
Number of	Port	Number	Port	Access	Uplink	Oversubs
Access	Speed	of Uplink	Speed	BW	BW	cription
Ports	(Gbps)	Ports	(Gbps)	(Gbps)	(Gbps)	Rate
48	1	4	10	48	40	1.2
48	10	4	10	480	40	12.0
48	10	2	40	480	80	6.0
48	10	4	40	480	160	3.0
48	40	4	40	1920	160	12.0
48	40	2	100	1920	200	9.6
48	40	4	100	1920	400	4.8
48	40	2	400	1920	800	2.4
48	40	4	400	1920	1600	1.2
48	100	4	100	4800	400	12.0
48	100	2	400	4800	800	6.0
48	100	4	400	4800	1600	3.0
48	100	2	1000	4800	2000	2.4
48	100	4	1000	4800	4000	1.2

100G access with 100G uplinks is horribly oversubscribed

400G uplinks offer good options for 3.0->6.0 OS for 100G access

Oversubscription Summary

- 40GbE NICs
 - 100Gb/s uplinks: okay for a start: OS=4.8
 - 400Gb/s uplinks: Great! OS=1.2
- 100G NICs:
 - 100Gb/s uplink miserable
 - 400Gb/s uplink pretty good, OS=3.0
 - Terabit uplinks: great... but can we wait?

400Gb/s uplinks support Server access of 40Gb/s and 100G/s ...so when will we need it?

The State of Things

in the Server Ethernet Market

- Overall port count growth ~20%/yr, 2008-2012
 - Expected to slow to \sim 5% 2013+ as higher speed ports deploy
 - Users saw multiple 1G ports as more cost effective than 10G
- Gigabit Ethernet
 - The incumbent technology, with \sim 76% of the ports in 2012
 - GbE still growing in 2012 ...may finally be peaking
 - "Rumors of my death have been greatly exaggerated."
- 10 Gigabit Ethernet
 - On a very strong growth ramp
 - Expected to surpass 1GbE ports in 2014
- 40 Gigabit Ethernet
 - Just getting started, expect to hit 5% of ports in 2016

What That Looks Like In Server Ports

Source: Crehan Research, 2012

From the Next Generation BASE-T CFI

x86 Servers by Ethernet Connection Speed (2012 Forecast) Based on IDC, Dell Oro, Crehan Research and Intel data from 2H'11 – 1Q'12

Version 1.1

IEEE 802.3 Next Generation BASE-T CFI Consensus Building Presentation - July 2012 Plenary

Page 19

Opinions About the Future Differ

- Key questions for a long term forecast
 - Rate of Server BW growth
 - Rate of higher speed port adoption
 - 40G or 100G NICs?
 - "40G is a small step, I'm waiting for 100G!"
 - "40G will be low cost by using mature technology. I'm going to stick with that for a long time!"

Reliable information about the future is hard to come by ...but I can at least ask for a second opinion

Another Very Long Term Estimate for Server Ports

CREHAN RESEARCH Inc.

Add Some History and Map it to Port Volume

Server Class Adapter & LOM Ethernet Ports

Source data: Crehan Research, 2012

Just for fun...

What Does That Say About Server Bandwidth Growth?

Server Ethernet Bandwidth Capability

Aggregate port count * port speed

Source: IDC, Dell Oro, Crehan Research. Reporting methods have changes over the years

Exponential trend continues.

BW doubles every ~2 years

Conclusions

Server BW growth continues

- This decade will see 40G & 100G NICs
- Mix is uncertain, but BW need will be there

Next Speed

- 400Gb/s uplinks will serve both 40GbE and 100GbE NICs
- Uplink speed >100Gb/s is *imperative* for 100G NIC usefulness.
 - Needed soon! ...or the guys in .3bj are wasting their time.