WAVELENGTH ALLOCATION
FOR NG-EPON

AUTHORS:

Marek Hajduczenia, PhD
marek.hajduczenia@mybrighthouse.com

Michel Allard, P.Eng.
michel.allard@cogeco.com
Summary

- Free spectrum in SMF used for EPON ODN becomes very scarce when 1G-EPON, 10G-EPON, and RFoG are used simultaneously.

- To make room for NG-EPON, some concessions from operators will be necessary.

- A proposal of NG-EPON wavelength allocation plan is made, building on mature Rx/Tx technology and characteristics of existing 1G-EPON / 10G-EPON devices.
Current Wavelength Allocation

<table>
<thead>
<tr>
<th>System</th>
<th>Downstream [nm]</th>
<th>Upstream [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G-EPON</td>
<td>1480-1500</td>
<td>1260-1360(^1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1290-1330(^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1300-1320(^3)</td>
</tr>
<tr>
<td>10G-EPON</td>
<td>1575-1580</td>
<td>1260-1280</td>
</tr>
<tr>
<td>GPON</td>
<td>1480-1500</td>
<td>1260-1360 (regular)(^1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1290-1330 (reduced)(^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1300-1320 (narrow)(^3)</td>
</tr>
<tr>
<td>NGPON2 (TWDM)</td>
<td>1596-1603</td>
<td>1524-1544</td>
</tr>
<tr>
<td>NGPON2 (P2P WDM)</td>
<td>1524-1625</td>
<td></td>
</tr>
<tr>
<td>RFoG</td>
<td>1550</td>
<td>1310 / 1590 / 1610</td>
</tr>
</tbody>
</table>

- Most desirable transmission windows for upstream / downstream already occupied by 1G and 10G systems
- NGPON2 was pushed into high 1500s and will likely require new laser / receiver development efforts.

\[^1\] Typical for Fabry Perot lasers
\[^2\] Typical for DFB lasers without temperature control
\[^3\] Typical for DFB lasers with temperature control
Coexistence options for NG-EPON

- Option A: coexistence with 1G-EPON and 10G-EPON
- Option B: coexistence with RF overlay (DS only) and 10G-EPON
- Option C: coexistence with RF overlay (DS only), 1G-EPON, and 10G-EPON
- Option D: coexistence with RFoG and 10G-EPON
- Option E: coexistence with RFoG, 1G-EPON, and 10G-EPON
- Option F: coexistence with 10G-EPON (only)
- Option G: coexistence with 1G-EPON (only)

- RF overlay is unidirectional (downstream only), with return channel implemented over digital upstream EPON path

- RFoG uses a bidirectional analog transmission, with downstream operating at 1550nm and return at 1310nm or ~1610nm
 - 1610nm return channel is deployed over ODN in coexistence scenario with 1G-EPON; 1310nm channel is already occupied by 1G-EPON
NG-EPON in greenfield scenarios

- By 2017 (and beyond) it is unlikely that analog delivery will continue to be used in new deployments
 - 10G-EPON and NG-EPON offer enough bandwidth to broadcast most common analog lineup and use selective unicast for the rest of lineup
 - Cost of RF equipment remains high, while cost of digital equipment is constantly driven down
 - Scenarios B, C, D, and E are very unlikely in greenfield scenario

- Conclusion: for green-field scenarios for NG-EPON, assume *NO* support for RF / RFoG
 - 1550nm for downstream and 1610nm for upstream could be then used for NG-EPON
 - All artifacts of analog transmission over the same ODN are gone
 - Filter design for NG-EPON devices could build on RFoG filter designs
NG-EPON in brownfield scenarios (1)

- Not all brownfield areas will be upgraded to NG-EPON
 - Brownfield migration scenarios are based on operator margins
 - Areas with lower margins typically use the currently existing technology until financial, competitive, or technical factors force the upgrade
 - In such areas, 1G-EPON + RFoG will be used in the foreseeable future

- Depending on upgrade timelines, two scenarios are possible
 - (1) replace 1G-EPON with 10G-EPON and leave RFoG in place, or (2) upgrade to 10G-EPON and remove RFoG
 - Scenario (2) depends on migration to all-digital distribution for voice and/or video, backoffice solutions, availability of customer-side equipment, in-house cabling, etc.

- Brownfields with a mix of residential and business customers are more likely to be upgraded
 - Business customers drive bandwidth demand!
NG-EPON in brownfield scenarios (2)

- It is unlikely operators will perform blanket upgrade to 10G-EPON and then to NG-EPON in all brownfield scenarios
 - This process will be gradual (cherry picking) and eliminate RFOG only in deployments where it makes economic and technical sense to do so

- NG-EPON in brownfield will be rolled out selectively, most likely in areas where RFOG has been already removed during migration to digital distribution
 - Support for scenarios B, C, D, and E is not critical
Scenario A (1)

- Coexistence with 1G-EPON and 10G-EPON provides most flexibility to operators with deployed EPON
 - Some customers will never need to be migrated off 1G-EPON (their services do not demand that)
 - 1G-EPON will continue to be deployed where spare OLT port capacity is available / ODN with 1G-EPON is already available

- Migration to 10G-EPON will be mostly done via overlay rather than replacement
 - 10G-EPON wavelength will be added to selected ODNs, and will supplement capacity, but not replace 1G-EPON

- Only greenfield builds might switch exclusively to 10G-EPON only at some point of time
 - That will happen sooner for business customers than for residential
 - Residential CPE devices for 1G+ data rates are still very limited
Scenario A (2)

- NG-EPON downstream should reuse RFoG downstream band (1550nm), which has mature Tx / Rx technology already in place.

- NG-EPON upstream has two available options:
 - Reuse upstream RFoG band (1610nm)
 - Reuse part of 1G-EPON upstream band (1340nm – 1360nm) and narrow down 1G-EPON upstream band to 1290nm – 1310nm

- The reuse 1G-EPON upstream band would force NG-EPON to support triple-rate burst-mode mode operation in upstream.
 - Extend the TDM-coexistence model from 10G-EPON
 - This covers operators who deployed wide-band upstream 1G-EPON
 - Operators who deployed narrow-band 1G-EPON could opt for WDM-coexistence model.
Scenarios F & G

- Coexistence with only 1G-EPON or only 10G-EPON is already covered under scenario A

- It is not likely that an operator with existing 1G-EPON deployments will move to NG-EPON directly, without stepping through 10G-EPON on the way

- An operator with only 10G-EPON deployments will move to NG-EPON at some point of time, but wavelength plan from scenario A would guarantee seamless coexistence.

- No specific wavelength plans is needed for scenario F and G
Conclusions

- Full coexistence with 1G-EPON and 10G-EPON is necessary
- No coexistence with RF overlay (downstream only) or RFoG
- Suggested wavelength allocation plan for NG-EPON
 - Downstream: 1550nm +- TBD
 - Upstream: 1350nm ± 10 nm, with 20 nm separation from 1G-EPON
- TDM-coexistence with 1G-EPON and 10G-EPON, where broadband upstream 1G-EPON ONUs are deployed
- WDM-coexistence with 1G-EPON and 10G-EPON, where narrowband upstream 1G-EPON ONUs are deployed
- Specific wavelength grid (number of wavelengths within the window) is TBD at this time
THANKS!